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FOREWORD

This final report describes work performed _orthe National Aeronautics and Space

Administration under Contract NAS 3-13231 by the Westinghouse Astronuclear Laboratory.

Mr. R. A. Lindberg of the Lewis Research Center was the NASA Program Manager.

The program was administered for the Westinghouse Astronuclear Laboratory by

Mr. R. W. Buckman, Jr. Dr. F. G. Arcella was the principal investigator.

Assistance in several key task areas is ap_"eciably acknowledged:

Autoclave HIP Welding: G. G. Lessman, D. R. Stoner and R. P. Sprecace

Metallographlc Preparation: S. Laclak and R. Sabolcik

Microprobe Analysis: A. W. Danko and R. W. Conlin

Electron BeamWeld Study: L. G. Stemann

ProgramConsulatlon: R. W. Buckman, Jr., and R. A. klndberg

This study wasperformed from July, 1970 to J_gy, 1973.

• Becauseof size lim;tations, the Appendices

are presentedin two volumes.

, ,.., Part IIA - Appendices A-G 'i

* Part liB - Appendices H-K

Irt,Jet tt eft eft e,ee, e,t e,t_,tt eft t _,It/et teet ttt et ett _ _e_

L

?

1975002137-003



APPENDICES

Paae

Foreword i i

Summary 1

A References A-1

B Diffusion Bibllography B-I

C Interdlffusion Predlctive Model C-1

D HI P-We Idlng Operations D-1

E Hot Press Operation E-1

F Diffusion Couple Age/Identificatior, Chart F-1

G Diffusion Analysis Methods G-1

H Hartley Computer Program H-1

I Liffhln Computer Program I-1

J Modification of the Colby MAGIC Program for Quantitative J-1

Electron Microprobe Analysis
L

K Error Ana lysis K-1

Part I of this report |s NASA-CR-134490

L

/

,%

_:_ III

] 975002 ] :37-004



I. SUMMARY '

Dissimilar metal joints in thermlonk powerconversionsystemscan degrade through material

interdlffusion. Suchdegradation effects occu, (I) ascracks in brittle intermetallic phaseswhich

form in the juncture; (2) as Kirkendall voids which form in one side of the juncture; (3) or '

asan impurity which reducesthe emlttance efficiency of the diode. In order to resolve the +

time dependencyof theseeffects, an experimental study wasperformed. Fourdiode emitter

materials, (1)arc cast tungsten; (2)CVD tungsten; (3) powdermetallurgy rhenium; and (4)

CVD rheniumwere autoclave hot isostatic pressureor hot presswelded to each of the structural

.:upportalloys listed below:

Cb

Cb-lZr

Ta

Ta-10W

T-111
¢

ASTAR811C

_. Mo-50Re •

_ W-30. 9Re-20.1Mop

W-25Re

W or Re

The resultingbimetallic interdlffustoncoupleswere vacuumaged for periodsof 100, 1000,

and2000 hour at 1200, 1500, 1630, 1800, and2000°C. Metallographlc investigationas °

well as electronmicroprobetrace and spotcountscanswereemployedto analyze the extent

+_: of interdlffus|onasa functionof age time and temperature. Computerprogramswere employed

to correct the microprobeanalysisdata for fluorescenseand odsorptiunand also to performthe

Boltzmann-Mantanoanalysisof the interdlffusionconcentrationprofiles. Engineering :_
+

~

l

+ • ii . i I +,1

• l, +]'+
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relationships were established to predict the extent of interdi_fusion fo. each system as a

function of age temperature and age time. These relations are expressed for each couple

system in the form:

+A (1/
B

In( )= ?

where 6 X is the net interdlffuslon zone width (cm)

t is the age time at temperature (sec)

T is the age temperature (OK)

and A, B are constants.

Table 1 presents the parameters A and B for equation (1) for the interdlffuslon systems

studied.

High temperature solid state interdlffuslon between two metallurgically joined metals of

widely different melting points can also result in a coalescence of vacancies in the lower

melting point materlal. The resulting pores form in a plane on one side of the juncture

and can result in fracture in that plane, as well as through leakage of cesium plasma or

containment gases. A method was devlsed to retard the formation of these Kirkendall

voids, and a cursory investigation showedit to be quite successful.

Although all of the selected dlffuslan junctions survived the one age thermal cycle without

fracture, several observations could be noted. Welded (hot isostatlc pressure)interfaces

with Re are not recommendedfor long term elevated temperature service due to brittle

intermetallic phasesand cracks whlch formed in the diffusion interfuce during short term

thermal ageing. Nonplanar joints such as tubular (concentric cylinder) face joints with Re

to Ta all cracked and fractured in the interdiffuslon zone. Tungsten joined to columblum

t
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Table 1. Parametersto Predlct Net Interd_ffuslon Zone Width
As a Function of Age Time(t-seconds)and Temperature(T - OK)

In ( _ X2
1

) : B(?)+A

(with 95% confidence limits)

System A B

W/Cb, Cb-1Zr -3.8689 + 0°2266 -37, 390 + 2810m

Re/Cb, Cb-1Zr -0. 4899 + 0. 2266 -43, 88n + 3060

W/Ta, Ta-10W -7° 3385 + 0. 1891 -35,290 + 2210

W,71"-111,ASTAR -3. 3585 + 0. 1530 -44,720 + 3760

Re,/Ta,Ta-10W -7, 1024+ 0. 0980 -35,020 + 1100m

Re/T-111, ASTAR -6.4489 + 0. 1374 -36,560 + 1730

W/_.o-5ORe +0. 1554 + O.1921 -45, 140 + 4500

Re/Mo-5ORe -8, 4797 + O.1466 -30, 140 + 2940

_ w,/W-30. 9Re-20.1Mo -7. 2084 + O.1719 -34, 750 + 3890

_ Re/W-30. 9Re-20. 1Mo -9. 3027 + O.1440 -28,580 + 3290

W/Re -4. 4641 + O.3317 -41,300 + 7470

W/W-25Re -2. 1992 + O.4407 -47, 100 + 9930

Re/W-25Re +2.4148 + O.5513 -53, 990 + 11,900

3
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and tantalum alloys were not subject to joint cracking but were suscapfible to considerable ,!_

Kirkendall vold formation. The most acceptable jolnts for long term h_gh temperature service

should be those of W to alloys such as T-111 or ASTAR-811C after being pretreated for

Kirkendall void inhibitlon.

Studies were also conducted into the weldability of Ke/Cb-1Zr and Cb-1Zr,/W-25Re

systems. EBweld parameters such as beam energy, width, traverse speed, sample geometry,

etc. were evaluated.

Successfulelectron beam welds were produced between Cb-1Zr alloy and W-25Re or Re.

These joints had braze characteristics in that the lower melting point Cb-lZr was melted

against the more refractory material, and little intermixing occurred. Due to the brittle ,

nature of these welds and the limited extent of this study, employment of junctions of

these mater;,_l, cannot be recommendedfor specific application without more definitive

characterization.

\

?
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NOTE:

APPENDIXA - REFERENCES

are |ncludedwith|n body of
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APPENDIX B. Diffusion Bibliography

Section I presentsa brief bibliography of diffusion references perHnent to this study. Included

are general diffusion studies, references to particular material systems, the handl_n:! o_ r_

ary systems,and background material. Attention was particularly directed toward refractor_

metal interdlffusion (chemical diffusion) studies.

Section II presentsa brief bibliography of diffusion bonding references.

NASA (Computer) literature searches in several topical areas are referenced. Thesesurveys

were very useful in gathering information and references pertinent to this study. For instance,

in one NASA survey for diffusion references, 80 percent of the references cited were pertin-

ent to this study.

11-2
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Section I. Diffusion References

1. Adcla, Y., et al., "Application de la Thermodynamlque des ProcessesIrreverslbles
a la Diffusion a L'etate Sollde," Thermodynamics, Vol. II, IAEA, Vienna, 1966,
p. 255.

Calculation of location of Kirkenclall voids.

2. Alleau, T., et al., "Post Mortem Examinations of Thermionic Emitters," IEEE
Thermionic Conversion Specialist Conference, Palo Alto, Calif., 1967, p. 312.

Interdiffuslon zone widths for W/Mo and Mo/Re couples c 1900°K.

3. Andelln, R. L., Knight, J. D., and Kahn, M., "Diffuslon of W and ReTracers in
W," Trans. Met. Sac. of AIME, Vol. 233, January, ;965, p. 19.

Arrhenlus equation for diffuslvity of Re* into W for 2660°C to 3230°C.

4. Anon., "Studies of Thermionlc Materials for Space Power Applications," GA-5665
(NASA-CR-54322), Annual Reportfor Spetember, 1963 through August, 1964.
September, 1964, pp. 240- 247.

Interdlffuslon in Ta/W, Cb/W, Mo/W systems.
Also in GA-9495 and STARAbstract N71-14140.

5. Askil, J., "A Bibliography on Tracer Diffusion in Metals,

"Part I. Self-Diffusion in PureMetals," ORNL-3795, 1965.

"Part II. Impurity Diffusion in PureMetals," ORNL-3795 II, 1965.

: "Part III. Self and Impurity Diffusion in Alloys," ORNL-3795 III, 1967.

"Supplement II to Parts I, II, II1," ORNL-3795, 1967.

General diffusion references, mostly tracer work.

6. Baluffl, R. W., "The Determination of Diffusion Coefficients in Chemical Diffuslon," i
Acto Met., Vol. 8, December, 1960, p. 871.

7. b.rrm, R. S. and Mazey, D. J., "The Effect of PressureUpon Void Formation in iD0ffusion Couples," Acta Met., Vol. 6, January, 1958.

i 8. Barter, R. M., Diffus,on in and Throu_lhSollcb, Cambridge Un0versity"Press, 1941.
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'7. Bokshte;n, S. Z., et al., "Volume and Boundary Diffusion of Tungsten in Molybdenum,"
WPAFB, FTD-HT-23-887-67, November, 1967.

10. Boltzmann, L., Ann. Phys. (Leipzig), Vol. 53, 1894, p. 959.

11. Butz, R.0 Erley, W. and Wagner, H., "Diffus;on Problems with W Coated Mo

Emltters," 1970 ThermioHc Conversion Specialists Conference (Proceedings of IEEE),
October, 1970, Miami, Florida, p. 101.

Interdiffuslon data for W/Mo systemat 1900, 2250°C.

12. _ckle, H., "Emplo; des Mecsures ._M,crodurete a L'etud_ de la Diffusion Inter-

metallique," Symposium on Solid State Diffusion, N. Holland Publ. Co., July,
1958, p. 21. _ "

Interdiffusion analysis by microhardnessinder,t traverses.

13. Castleman, k. S., "An Analytical App,oach to the Diffusion Bonding Problem,"
Nucl. Sc;. and Engr., Vol. 4, 1958, pp. 209- 2L6.

14. Chandler, W. T. and Walter, R. J., "Hydrogen Effe,'" in Refractory Metals,"

Refractory Metal Alloys, Metallurgy and Technology, ,.dltors I. Machlin, R. T.
Begley, an_-_. _/Veisen'---'t,Plenum Press,--1_-1_.

15. Crank, J., Mathematics of Diffusion, Oxford-Clarendon Press, 1956.

16. Darken, L. S., AIME Tram., Vol. 175, 1948, p. 184.

17. DeHoff, R. T., Anusavice, J. K., and Wan, C. C. 0 "Diffusion Composition Path
Patterns in Ternary Systems," University of Florida, ONR Contract No. N-00014-
68-A, 0173-0011, Metallurgy Branch NR 031-697, undated. (Received on
February 15, 1972).

18. Diffusion in Bod.B_._.+y-CenteredCubic Mater;ols, Editors J. A. Wheeler, Jr. and.-T.r'---'- ot,on,

19. Diffusion Data, Publishedby the Diffusion Information Center, Bay Village, Oh;o.
-_" Volumes£:'3",

An annototed bibliography of diffusion references categorized by type of
diffusion, solvents, diffusion analysis, et_,
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20. Dickinson, J. M. and Richardson, L. S., "Constitution of Re-W Alloys," Trans.
ASM, Vol. 51, p. 758, April 18, 1958.

21. Eckel, J. F., "Diffuqon Across Dissimilar Metal Joints," Journal J American
Welding Society, Welding Res. Suppl. 170-S, April, 1964.

22. Fitterer, G. R., "Entropy, Lattice Parameters, and High Temperature Phenomena of
Metals," ASM Trans. Quarterly, Vol. 60, _rch, 1960, p. 15.

23. Gertsriken, S. P. and Dekhyar, I. Ya., Solid State Diffusion inMetal_____._sand AIIoy____s,
AEC-TR-6313, April, 1964.

24. Girlfalco, L. A. "D;ffusion in Solids at High Pressures," Metallurgy at High
Pressuresand Temperatures, Vol. 22, Gordon Breach Publ., 1963, p. 260.

25. Guy, A. G., Blake, R. G. and Oikawa, H., "Predicting the Course of Homogeni-
zation in Multi-Component Alloys," AIME TMS Trans., Vol. 239, June, 1967, p.771.

26. Guy, A. G., Leroy, V. and Lindemer, T. B., "Diffusion Calculations in Three-
Component Solid Solutions," ASM Trans., Vol. 59, No. 3, Sep,., 1966,
pp. 517 - 534.

27. Guy, A. G. and Leroy, V., "Diffusion en Systeme Ternalre Application on Systeme
; Co-Ni-Cr," Journes Interna "onales des Applications due Cobalt, Bruxellus, 1964.

_: 28. Guy, A. G. and DeHoff, R.T. "The Study of Multi-Phase Diffusion in Three
Component Metallic Systems," AFML-TR-68-360, WPAFB, January, 1969.

_ 29. Hartley, C. S. and Hubbard, K., "A Computer Programfor the Matano Analysis of

i Binary Diffusion Data," ASD-TRD-62-858, November, 1962.
Modified for CDC 6600 Fortran IV and used in this study.

30. Hartley, C. S., Steedly, J. E. and Parsom, L. D., "Binary Intradlffuslon in Body-
Centered Cubic Trar6ition Metal Systems," ML-TDR-64-316, 1964.

31. Hehemann, R. F. and Leber, S., "Chemical Diffusion in the Cb-W System," AIME _
Tram., Vol. 236, July, 1966, p. 1040. i

W/Cb interdiffusion at 1700, 1900, 2100, 2300°C.
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32. Hudson, R. G., Horner, M. H., and 'Y'ang, L., "Some Investigations of Refractory
Metal Systemsof Thermionic Interest," IEEE Thermionic Conversion Specialist Conf.
(proceedings) NASA-CR-111593 (GA-9495), Carmel, Calif., October 21, 1969.

W/Ta, W/Mo, W/Cb interdiffuslon at 2000, 2100, 2200°C.
Interdiffusion zone widths given.

33. Hudson, R. G. and Yang, L., "Diffusion and Electron Emission Properties of Duplex
Refractory Metal Thermionic E,,.;,; _rs," Refractory Metals and Alloys IV, Researchand

Development II, AIME publ., October, 1_65, I_.

Interdiffusion zone widths for W/Re, W/Ir systemsat 1600, 1800, 2000,
2100°C.

34. Ivanov, A. N., Krasilnikova, G. B. and Mitin, B. S., "Diffusion Parameters in the
Mo-Ta and W-Ta Systems," Fiz. Metal. Metalloved., Vol. 12, No. 2, 1970,
pp. 520- 524.

35. Jost, W., Diffusion in Solids, Liquids, and Gases, Academic Press, Inc., 1952.

General diffusion reference.

36. Kirby, L. J. and Fullam, H. T., "Promethium Heal Source Compatibility Studies,
Part II. Metal-Metal Compatibility at 1100°C, '' BNWL-398, May, 1967.

37. Larlkov, L. N. et al., "Investigation of Rhenlum and Molybdenum Diffusion in
Tungsten and Tungsten Alloys," Tech. Trans. FTD-HT-27-768-68 (AD-686985).

Not chemical interdiffuslon, but tracer diffusion into paly- and single
crystal solvents.

38. Lesueu_ R., "Mesure des Flux Partiels de Degazage du Molybdene et du Tungstene
a 2000-K," Colloclue sur la Metrologie et k'Analyse des Gas en Ultra-Vide, !
CONF-700418-1, CEA, Paris, April 22, 1970.

Vacuum outgassing rates for Mo and W.

39. Levesque, P., etal. "Const|tutlon of Re-Cb Alloys," ASM Preprlnt No. 192,

i 42nd Annual ASM Conf., Philadelphia, October 17, 1960.

40. Lifshin, E. and Hannemann, R., "Electron M|crobeam Probe Analysis. II, Automated
Data Collection and Computer Analysis," GE-66-C-250, September, 1966. i
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41. Lindem_r, T. B. and Guy, A. G... "Apparatus for Bonding and DifFusing Metal
Specimens Under Pressure," Welding journal Res. Suppl., May, 1968.

42. Lindemer, T. B. and Guy, A. G., "Analysis of Ternary Diffusion Curves Using a
Second Integration of the Fick Law," AIME TMS Trans., Vol. 239, December, 1967,
p. 1924.

43. Manning, J. R., "Diffusion in a Chemical Concentration Gradlent," Phys. Rev.,
Vol. 124, No. 2, October 15, 1961.

44. Manzlone, A. V., et al., "Observations Cu,;ce.rn_ngthe Interdiffuslon of Cb-lZr
Alloy with 316 Stalnless Steel," PWAC, USAEC Contract AT(30-1 )-2789.

45. Matano, C., Z. Phys. Japan, Vol. 8, 1933, p. 109.

46. Maurice, F., "Microprobe Use in Diffusion Studies," J. Microsc, Vol. 9, No. 3,
1970, pp. 296- 299.

47. M'Hirsl, A., "Influence de la Pression sur la Diffusion dan les Metaux," Memoires
Sclentifiques Rev. Me_allurg, Vol. LXIV, No. 7,/8, 1967.

Effects of pressure on diffusion in metals.

' 48. Anon., "Diffusion in Refractory Metals," ML-TDR-64-61, WPAFBAFML, March,
; 1964.

Interdlffuslon in the W/Ir, W/Ru, W/Rh, W/Pt systems.

49. Ogren; J. R., Blumenthall J. L., and Ham, R. C., "Rad_ "stope Propulsion Tech-
nology Program(POODLE). Final Report. Vol. III - Oxidc, ion and Diffusion in
Noble Metal Alloy Claddings," STL-517-0049, October, 1966.

50. Peterson, N. L., "Diffusion in Refractory Metals," WADD Tech. Report TR-60-793,
March, 1961.

Generally C, O, H, etc. interstitialdlffuslon. !

_ 51. Pawell, R. E. and Lundy, T. S., "Tracer Diffusion in Tungsten," Acta Met., Vol. 17, l

&

No. 8, 1969, pp. 979- 988.

:: Tracer diffusion of Nb*, Ta*, and W* into W.
;
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52. Passmore, E. M. et. al., " , " "InJest,gation of Diffusion Barriers for Refractory Metals,
ASD-TDR-62-432 WPAFBAFML, July, 1,6-.

Also,

WADD Tech. Report TR-60-343, August, 1960.

53. Patterson, J. W., "An Analysis of Intrinsic Diffusion and Interdiffusion in Single
Phase Binary Diffusion Couples," Ekl-528, Amex Laboratory, Preprint Proj. 713-S,
(AD-70 8633).

54. Phillips, W. M., "Welding and Aging of Bi-Metallic Refractory Metal Joints,"
IEEEThermionic Conversion Specialist Conf., October, 1970, Miami, Florida.

Observed that wide weld joints had lower incidence of Kirkendall voids
after aging.

55. Prokushkln, D. A. and Vasileva, E. V., "'¢_utual Diffusion of Nioblum and Metals
of the IV A, V A, and VI A Groups," WPAFB FTD, Ab 685- 007, Nov., 1968.

56. Rapperport, E. J. and Hartley, C. S., "A Review of Diffusion in Refractory Metal

Systems," Refractory Metals and Alloys II, Vol. 17, J. Wiley and Sons, 1962,
p. 191.

57. Roux, F. and Vignes, A., "Diffusion dan lesSyst@mesTi-Cb, Zr-Cb, W-Cb, "
Revuede PhysiqueApplique@, Tome 5, Juln, 1970, p. 393.

58. Sabatler, J. P. and Vignes, A., "Etude de Phenomenesde Diffuslor. dan les Systeme
Ternalre Fe-Ni-Co," Memoires Sclentlflques Rev. Metallurg, Vol. LXIV, No. 3,
1967.

Good microprobe work, concentration profiles.

59. Shewmon, P. G., Diffusion in Solids, McGraw-Hill Co., 1963.

General diffusion reference.

60. Smigelskas, A. D. and Kirkendall, E. O., Metals Technol., 13, Tech. Publ. 2071,
._'_ 1946.

Original description of vacancy flux and coalescence into voids.

Also,

AIME Trans., Vol. 171, 1947, p. 130.

B-8

z
f ...... --- i

1975002137-017



61. Smlthells, C. J., Ed., Metals Reference Book, 4th Ed., Vol. II, o. 637, 1967.

62. Someren, L. Van, "Metallurgical Observations on Thermionlc Converters," IEEE
Thermionic Conversion Specialist Conference, Pala Alto, Calif., 1967, p. 321.

Interdiffusion data for Re/Ta at 2000°K.

63. Steichen, J. Mo, "lnterdiffusion Between Certain Vapor Deposited - Foil Refractory
Metal Couples," BNWL-1071 (UC-25), June, 1969.

64. Tregubov, E. A., et al., "Diffusion of Ta in W," Koklady, Vol. 180, Academiia
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65. Wagner, C., "The Evaluation of Data Obtained with Diffusion Couples of Binary
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67. Walker, G. H. and Lewis, B. W., "Cu-Ni Diffusion: Electron Microprobe Study of
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i D(Re -W) at 1400°C to 2000°C.

I 69. Ziebold, T. O. and Ogilvle, i_. E., "Ternary Diffusion in Cu-Ag-Au Alloys,"
AIME TMS Trans., Vol. 239, July, 1967, p. 942. _ :
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Additional Diffusion References In:

1. NASA Literature Search No. 11870

"lnterdiffuslon of Tungsten, Rhenium, Tantalum, Columblum, Molybdenum,
Hafnium, and Zirconium," May 13, 1970

Several good references to refractory metal interdiffuslon and analysis.

2. NASA Literature Search No. 16622

"Interdlffusion Between Tu.gsten or Rhenium and other Refractory Metals,"
October 13, 1971

Several good references to refractory metal interdlffusion.

3. NASA Literature Search No. 16627
"Evolution of Absorbed Hydrogen," October 12, 1971

Used for analysis of post autoclave hydrogen removal from diffusion couples.

4. NASA Literature Search No. 16621

"Solid State Diffusion Analysis," October 13, 1971

Several references in analytical techniques as well as additional material
references.

5. NASA Literature Search No. 16627 _

"Evolution of Absorbed Hydrogen," October 12, 1971

6. Defense Documentation Center Search, Control No. 038178
"Solid State Diffuslon," April 17, 1970

!
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Section 2. Diffusion Bonding References*

1. Bann;n, P., "A Study of the Literature of Diffusion Bondlng," ORNL-TR-851, 1965.

2. Batista, R. I., et. al, "Elevated Temperature Diffusion Bonding ¢,f Tungsten to
Tungsten Under Pressure," LA-2751, 1966.

3. Crane, C. H., et al., "Study of Dissimilar Metal Joining by Solid State Welding,"
NASA-CR-82460, 1965.

4. Cunnlngham, G. W. and Spretnak, J. W., "The Mechanisms of PressureBonding,"
BM1-1512, 1961.

5. D'Annessa, A. T., "The Solld-State Bonding of Refractory Metals," Welding
Journal Supplement, 1964.

6. Dunning, J. S. and Metcalfe, A. G., "Basic Metallurgy of Diffusion Bonding,"
AD-460949, 1964.

7. Fugardi, J. and Zambraw, J. L., "Bonding of Various Metals and Alloys by
Isostatic Pressingat Elevate6 Temperatures," SCNC-272, 1958.

8. Hickox, G. K., "Diffusion Bondingof TungstenAlloys," WAL-TR-465.54/4, 1£63.

9. Hodge, E. S., "Gas PressureBondlngof Refractory Metals," Englneerlng Quarterly,
Vol. 1, No. 4, 1961, pp. 3- 20.

10. Metcalfe, A. G., et al., "Diffusion Bondlngof Refractory Metals," ProgressReport
Nos. 1-6, 1962- 1964.

11. Paprochl, S. J., etal., "Gas PressureBondlng,'° DMIC-159, 1961.

12. Paprochl, S. J., et al., "The Bondingof Molybdenum - and Niobium - Clad Fuel
Elements," BM1-1451, 1960.

13. Samsonov, G. V., "The Electron Theory of Diffuslon Welding," Automat. Weld.,
' Vol. 19, No. 10, 1966, pp. 30- 35.

14. Torgemon, R. T., et al., "State-of-the-Art Survey of Di,slmilar Metals Joining by
Solid State Welding," NASA-CR-76933, 1965.

* Hot Ismtatl¢ Pressure(HIP) Welding
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Additional Autoclave Welding References In:

1. NASA Literature Search No. 16628

"Autoclave Applications in Welding," October 12, 1971
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APPEI_!DIX C. Interdiffusion Predictive Model

Before the age time/temperature schedule for this program was fixed, an interdlffusion zone

width predictive model was derived. Thls model was necessary in that underagelng of the

dlffuslon couples would have resulted in small interdlffusion zone wldths that would have been

difficult to analyze and would have resulted in very hlgh errors. The interdiffuslon zone

wldths (_x-cm) after agelng for time (t-seconds) at temperature (T-°K) were predlcted as

2

In(.-_) = 21.0 ( TTm )- 37.5

where Tm is the lowest melting polm of the W or Re to metal X binary couple.



I. INTRODUCTION

An extensive literature review, including a computer key word search, of experimental

refractory metal interdiffusion data was made in order to:

1. Establish the degree and extent of prior work with respect to the work planned

for this study, and to

2. Construct an engineering level, predictive model to determine the extent of

interdlffuslon as a function of age time, age temperature, and material combina-

tion.

Experimental interdlffuslon investigations between thermlonlc emitter materials (primarily

W, Re)and refractory metal structural supportmaterials (primarily Cb, Ta, W-Re alloys)

were studied. Chemical interdlffuslon studies(infinite, binary couples) were reviewed rather

than isotope tracer or similar seml-lnflnlte boundary condition work.

The published interdlffuslon information in the above selected primary materials areas was

quite sparse, indicating a definite area for valuable contributions. From the scant experi-

mental data that was available, an engineering level predictive model was derived. The

model predicts the interdiffusion zone width (the linear extent between 2 percent and 98

percent of W or Re) of tungsten or rhenium to refractory meta! alloys as a functlo of age

time at temperature. Two model equatlom were derived:

In( ) - 25.6 ( )- 43.2
m (C-I)

for W or Reto Group VIII elements of the periodic table, and

2

,o@.) m (C-2)
for W or Re.to Group V and VII elements of the periodic table. In these equatlom 6 x is the

interd|ffusion zone width (2 percent to 98 percent W or Re) |n cm, t is the age time (seconds)

at ¢omtant temperature T (OK), and Tm ls the lowest melting point (OK) of the diffusion couple

binary material ¢ombinatlon (i.e., an eutectl¢ for |mtonce). The interdiffuslon zone width

predictive model derived presenteda good cormkltion with experimental values. Its deriva-

tlon is described below.

C-3 r-
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II. MODEL DEVELOPMENT

Solid state masstransport hasbeen studied for many years, and manyreferencesattest to the

degreeof soph;sficaHonof analysesof the phenomenon?' 2)*For the purposesof establish;ng

an engineering level predictive model, only the simplest precepts need be forwarded.

The temperaturedependenceof diffusion coefficients hasbeen historically describedby the

Arrhenius relation

D -- D e-Q/RT
o (C-31

where D = Diffusion Coefficient

DO = Constant

Q = Activation Energy

R --- Gas Constant

T = Age Temperature(OK)

Since the interdiffusiondistance, Ax, hasalsobeenexpressedby relating it to D,

6x a _t (C-4)

where t isage time, then it followsthat onecould relate interdiffusionzone width and age

timeto D and thusto temperature:

Ax2 a De'Q/RT
-i-- o (C-5)

i Thenatural logarithmof each sideof equation (C-5) resultsIN _C-6):

In(A-_ 2) " C " I_" (C-6)

i i1!
e

Referencescited are locatedat the endof thissection, SectionC.

\
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where C is c .onstant. A semilogarithm graph of _x2/t versus the reciprocal of the age tem-

perature will generally be a straight llne, and will yield a "quasi" activation energy for inter-

diffusion zone width determination.

Experimental data for W-Re interdlffusion from Hudsonand _'ang (3)are plotted in Figure C-1

to demonstrate the validity of equation (C-6). The interdlffuslon zone width for W-Re systems

can be predicted for any one age tlme-temperature combination by the use of Figure C-1

where Q, the "quasi" activation energy, is 42,000 cal./mole.

However, if one wishes to predict _nterdlffusion zone thicknesses in other W-refractory metal

systems, Figure C-1 would be inadequate, as demomtrated ;n Figure C-2, where the inter-

diffusion characteristics of several systemsare presented.(4)

A general, karson-Miller type parametric relationship can be established to relate all W-

refractory metal interdlffusian data to one "Family" Jine by first referring to Fitterer! 5 )

Fitterer showsthat all metals possessthe same total entropy at one degree below their respec-

tive melting points (Tm-1), and at zera degrees Kelvin. Thus, on a fractional scale, every

element would possessthe same relative entropy content when at equal T/TIn ratios. The

maximumentrapy af an allay systemwauld occur at its lowest melting point - whether eutectlc

ar solid solution system. Th_s, using T/TIn, where Tm is the lowest melting point af the binary

W-refractary metal alloy couple, it is possible to relate different couple combiratlons to equal

entropy levels.

To relate the relative entropy level to _x2/t, the activation energy, Q, mustbe investigated.

Consider for a lattice jump that (2)

o-[,o.,. ,c.,,
where H is the energy required for o lattice jump, S is the entropy created by the Jump.and

the brocket ten_ is the DO In (C-3)(2):

C-5
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Then, 2

In (_tx---) _ K H S (C-8)- R-"T + R-

By using Fitteret+s re lative entropy concept where

T (C-9) ,
S_T- _"

and since H will be approximately the same for all of the W/"X" systemsstudied as shown

by the constant slopes of the V_?'"X" systemsplotted in Figure C-2, then H/RT will approach

a constant value, for the purposes of argument, for all of the W/"X" systemsstudied. Th..s,

for any W/"X '°system of interest, the only variable will be T/TIn, where T is the temperature

of interdlffuslon, and Tm is th _. lowest system melting point, and equation (C-8) becomes

In( ) " Tm (010)

The following systemsand their melting points (lowest system melting point) are plotted in

Figures C-2 and C-3.

System Tm Ref.

W/Ru 2523° 4

W/It 2683 4

W/Rh 2233 4

W/Pt 2042 4

W/Ir 2683 3 i

Note in Figure C-2 that the slopes, or activation energies are approximately the same for all

_ of the systems. The displacement of the curves appears to be proportional to T/TIn - or, the :

i_ relative entropy level of each system. Figure C-3 presents the same _x2/t information that is

! Z_ in Figure C-2, except that it is plotted against T/Tm as expressed in equation (C-10).

'+ The consistency of the ilne in Figure C-3 with the prediction of equation (C-10) reinforces the

relative entropy level concept. Figure C-3 presentsthe extent of interdiffusion (zone width) +

_. for age time t and age temperature T for tungsten h_Group VIII elements of the periodic

table. Curve fitting to Figure C-3 resulted in the following fun,:tlon

C-8
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T
In t ) = 25.6 (-T-m-") - 43.2 (C-11)

where A x = Interdiffusion Zone Width (cm)

t = Age T]me (sec.)

T = Age Temperature (°K)

Tm = Lowest System Melting Point (OK)

J

Z
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1!I. PREDICTIVE MODEL FOR THIS STUDY

The model format was also applied to tungsten and rhenium literature data for interdiffusion

with elements of Groups V _.lndVII of the periodic table. The following systemsant ,he,r

melting point (lowest system melting point) ratios are presented in Figure C-4.

System Tm..p Ref_.___.

W/Cb 2743°K 6,7

'vv/r_ 31O0 3

W/Ta 3269 7

Re/Ta 2963 WAN L*

The zone width predictive model in Figure C-4 t_'.lows the equation

I,, ( )= 21.0(Tm)-37.5 (C-12/

where Ax : Interdlffusion Zone Width (cm)

t : Age Time (seconds)

T : Age Temperature (OK)

Tm = Lowest Melting Poin_of Binary Combination (OK)

Both FiguresC-3 and C-4 demonstrate that a family relationship, commonality, can be

established for W and Re interdlffusion between separate groupsof the periodic table. Also,

the T/Tm ratio places all data at the same relative fraction of the melting point - a position

of commonentropy levels. The effects of low temperature grain boundary diffusion can be

seen by deviatlan from the linear relationship at temperatures below T/Tm = O. 6 in both figures.

Equation (C-12) and Figure C-4 were used ta estimate tungstenand rhenium to Cb, Ta, Re,

etc. interdiffusion zone widths for the proposedageing candltiom of this program. All inter-

• * High temperature anneal of KVI couples. Preliminary programdata.
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diffusion zone widths for the couples of this programwere predicted to exceed 3.5 x 10-3 cm

(i.e., 50, at a 45°a_le to the interface). This dlmension was deemed acceptable for

microprobeanalysis.

?

i
i

I
i
!

t

* Acceptablemicroprobetraversebeing 25 spotcountstepsat 2_ step intervals.
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IV. CONC! USION

Two predictive interdiffuslon zone width models were derived through relative entropy ratio

concepts. For the interdlffuslon of W with Group VIII elements of the periodic table, zone

width relationships were established as:

In ( ) = 25.6 (-_--) - 43.2 (C-13)

For inturdlffuslon of W or Rewlth Group V and VI elements of the periodic table, zone

widths followed the relation:

In (_-_-_) = 21.0 (--_-m) - 37.5 (C-14)

where Ax = Zone Width In cm

t = Age Time (seconds)

T = Age Temperature (OK)

Tm = Lowest SystemMelting Point (OK)

Equation C-14 was employed early in the study to demonstrate that the age time/temperature

conditlcns selected were adequate to achieve analyzable (microprobe) interdlffuslon zones.

•, C-14

q
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I. SUMMARY

This appendix reviews the autoclave HIP-welding operations which occurred during the course

of this program. Operation and autoclave practice are reviewed, and special attention is

given to hydrogen pickup in the sample materials, as well as oxidation prevention.

Table D-I shows that four autoclave cycles were made in this program, two to .esolve HIP-

weld parameters, and two to weld the program couples. Table D-II presentsseveral conclusions

concerning autoclave practice.

The following sections desCrlbethe autoclave facility; preparation, loading, and operating

practices; the four HIP-weld cycles of this program;and contamlnation problems.

J
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Table D-I. Diffusion Couple Evaluation- HIP-weld Cycles

Cyc I,-- Purpose Results

1 Evaluate HIP-weld T-P Molybdenum HIP-weld cans leaked due to
conditions for all-ys of oxygen hot tearing. Showed need to add
program, getters (tantalum alloy chips) and baffles

to furnace.

2 Evaluate HIP-weld T-P Welding conditions of 193 MN/m 2 at 1440°C
conditions for alloys of for 40 minutes yielded 95-100% welding of
program, all alloys in the program. Ta chips and Ta

loll baffles prevent oxygen hot tearing of
molybdenum cans.

3 HIP-weld of all program Problems in autoclave furnace control. 100%
diffusion couples at T-P welding of Re/Cb, Re/Cb-lZr, W,/Cb, and
conditions of cycle 2. W/Cb-|Zr. Other couples partially welded.

4. HIP-weld of remainder Achieved 65% of desired program couple welds.
of program couples. Furnace melt-through precluded further cycles.

D-4
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Table D-II. Pertinent Considerations Toward HIP-welding
Refractory Metal Structures

• Ta and Ta alloy and Ta chips effectively reduce the oxygen problem in the furnace

zone.

• Ta and W foil baffles as well as AI203 powder packing eliminate the "Chimney

effect" of flowing gasesaver the subject materlals.

• Roughing pump-low temperature vacuum outgass.ngcycles are effective in removing

absorbedoxygen.

• Molybdenum encapsulation of subject material welds is efi'ective under these condi-

tlonsand can be readily removed from W, Ta, Cb, etc. by preferential etching.

• Molybdenum encapsulation preventsoxygen, nitrogen, carbon contamination of

welded structures-- but not hydrogen contamination.

• Effective welds are very geometry dependent -- small 1.25-cm by 1.25-cm diffusion

COUl01esHIP-weldlng more readily than 6.3-cm square plates of the same thickness

for the same TLP conditions.

• Surface preparation for good HIP-welds only requires cleanliness.

._ • Small wire stress ri_ers placed between the surfacesto be welded appear to enhance

welciability of the structures.

• Control of the molybdenumwound autoclave furnace can best be achieved by

respondingto resistance rather than amperes, wattage, etc.

• Hydrogencontamination in HIP-weld materials could possibly be reduced by removing

pressurebefore temperature (where ;nterdlffuslon is nat a problem)

i

i
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II. HIP-WELD PARAMETERS

A. Background - Model

Essentially only two requirements must be satisfied to produce a metallurgical bond between

two metals by the processof diffusion welding. The first requirement is that intimate contact

be achieved between the mating surfaces of the metals to be joined. The second requirement

is that at least a minimum amount of diffusion occur at the dissimilar metal interface te

accomoda,_ethe rather enormous atomic mismatch presented by different materials and lattice

orientations. A significant effort was made to minimize the bonding related diffusion for this

program since a small "zero" condition was required to accurately measure subsequent inter-

diffusion zone growth.

Acting to prevent intimate contact are three "barriers": surface contamination, surface :

roughnessand the resistance of the material(s) to plastic deformation. Surface contamination

can be minimized but only rarely can it be entirely eliminated. Even the most sophisticated

cleaning method is not likely to produce an absolutely clean surface since inherent oxide

films, typically 20-50,_ thick at room temperature, form almost immediately on clean surfaces.

The importance of oxide films to bonding is reduced by employing bonding parameters which

cause the material to flow. At these conditions, oxide films can be more easily disrupted

and, for many of the materials in this program, the oxide will readily dissolve. Hence, very

minor residual surface contamination was not expected to play a significant role in gas pressure

bonding in this program.

As with residual surface contamination, surface roughnessdoes not play a major role in

diffusion welding at bonding conditions which exceed the material yield strength, since

asperities are then readily deformed. In this respect the resistance of the material to plastic

deformation is extremely important to diffusion welding since the effect of surface roughness

and contamination ore both minimized during bonding under conditions of plastic flow. In

_ addition, plastic deformation in itself is vital to achieving intimate surface contact. (NOTE:

the total deformation required is very small and doesnot alter the metallurgical structure ).

P
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Choice of the Bonding parameters of pressure and temperature (bondin_ time is much

less important) is clearly a critical factor in the development of a bonding process. Analysis _

of considerable bonding data has yielded the empirical relatlonship of Figure D- 1. This curve

establishes combinations of pressureand temperature likely to produce bonding. Data points

represent the minimum conditions reported to bond a particular material either to itself or to

another stronger material; however, in a few ca_es insufficient work was done to establish

that the bonds produced were made at the minimum possible pressure-temperature combination.

For this reason (and several others, including the assumption that optimal cleaning was indeed

always provided) the curve was used to approximate those pressure-temperature combinations

which generally produce bonding from those which do not. Notice that in Figure D-1 the

abscissais homologous temperature and the ordinate is the ratio of bonding pressure to ultimate

tensile strength of the material at a tempemperature of 0.6 of its melting point. Strength at

0.6T M was chosen since this is the range typical of successful bonding practice.

In this program inltlaJ bonding trials were conducted near 1300°C. However, it was found :

that the bonding temperature had to be increased to achieve complete bonding for some of

the material cemblnatlons. This flndlng was supportedby the data of D'Annessa for the solid-

state bonding of tungsten-columblum couples at 928°C and 69 MN/m 2 (10,000 psi) (1). Using

this data and an ultimate tensile strength at 0.6 TM for columoium of 27.6 MN/m 2 (4,000 psi),

the (0) data polnt lying very near the curve in Figure D-1 was obtained. Since this curve

representsmlnlmum pressureand temperature conditions required for bonding, it was seen that

_uccessfulbonding of tungsten-columblum couplesat temperatures lower than 930°C could only

be achieved at muchgreater pressures. (Note the slope of the curve in this temperature region. )

It is the high temperature strength of the weaker component in the couple that is of importance

to bond formation. Therefore, tungsten-columblum bondsrequire the least severe bonding

":_ condltlons. Couples of materials having appreciable strength at temperaturessignificantly L

* W. A. Bryant, WANL

?
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higher than that required for columbium bonding must necessarily be subiected to more severe

hondlng conditions. For example, consider the worst case, the self-bonding of tungsten, a

material of the highest melting _nt on the absolute temperature scale. Reference to Figure

D-1 shows that a bonding pressure requirement of 345 MN/m 2 (50, 000 psi), or approximately

five tlmes the ultimate tensile strength of tungsten at 0.6 of its absolute melting polnt, is

required at this low temperature. Since the autoclave pressure limit is 206 MN/m 2 (30,000

psi), a bonding temperature of about 1460°C would be required to assure complete welding.

Bonding temperatures for the remalnlng material comblnatlons were expected to lle between

900 and 1460°C.

B. Material Handling

Since a large diversity of materlal combinations were to be autoclave welded for this study,

two autoclave cycles were devoted to _r_,meter evaluation tests to select the minimum tem-

perature at which all couple combinations would weld 100 percent. In these trials 0.20cm

(0.080 inch) thick tungsten sheet 3.18 cm x 12.70 cm (1 -1/4 inches x 5 inches) was coupled

with /..60 cmx 1.60cm (5/8 inch x 5/8 inch)square coupons of refractory me:als as illustrated

in Figure D- 2. Figure D-2 shows the tungsten sheet (half of each couple), the refractory

metal pieces (other half of each couple), and the molybdenumenvelope can which was

electron beam weld sealed around the pieces to be autoclave welded. Readlng acros_

(Figure D-2 ), the couple materials are (1) Cb, (2) Cb-lZr, (3) Ta, (4) To-lOW, (5) T-111,

second row, (6)W-25 Re, (7)ASTAR 811C, (8) W-20.1 _-30.9 Mo, (9)Mo-5ORe, (10)Re,

and the large piece, W.

The following sectlon describes the parameter eval_tlon autoclave cycles.
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Figure D-2. SampleDiffusion Couple Materials with Molybdenum Can and Lid Prior to
-_ Autoclave ParameterEvaluatlon Cycle.
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Ii. PARAMETEREVALUATION CYCLES

A. Autoclave Facility

The autoclave employed in the HIP-weld joining of the diffusion couples for this program is

located at the Westinghouse Astronuclear Laboratory, Large, Pennsylvania. Its cold wall

pressure vessel is 71 cm (28-1nches) diameter by 346 cm (!36-inches) long. Maximum specl-

men size is 15.2 cm (61nches)diameterby 91 cm (36-inches) long. A molybdenum-wound

five-zone resistance furnace provides uniform heating from 900 to 1500°C. Temperature

distribution and monitoring can be accomplished with the aid of 16 thermocouple feed throughs

into the pressure cavity. The pressure is supplied by helium gas which is reclaimed after each

operation. A four-stage main compressor is used for pressuresup to 117 MN/m 2 (17,000 psi1,

and a single-stage booster compressor allows compression up to 206 M N/m 2 (30,000 psl).

Vessel closure is affected by a Gasche resilient thread closure. Almost any time-temperature

pressure cycle configuration can be programmed for the facility.

B. Weld Parameter Resolution

A qualification run of the autoclave furnace was made with 2 sealed molybdenum containers

: of pressurebonding samples. In view of the specimen requirements, the target parameters

were 1400°C and 193 MN/rn 2 (28,000 psi) with the specimensat temperature for as short a

i time as possible. Special care was made prlor to and during the initial furnace heating to

remove as much of the furnace contamination as possible by initial evacuation and finally

by a 1 atmosphere, low temperature (700°C) heating cycle followed by evacuation. The

"_ helium atmosphere impurity levels were measuredbefore and after the run.

A maximum furnace temperature of 1480°C and a part temperature of 1330°C were obtained,

but a delay in pressurizing to 193 MN/m 2 (28,000 psi) resulted in approximately a 4 hour dwell

above 1250°C. Also, a marked cooling of the bottom furnace zones occurred at maximum

pressure, presumably due to severe internal convection currents. It was decided to include

refractory metal baffles to reduce the temperature instability in future runs. An examination :

#
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of the temperature distribution indicated a need to raise the specimens 30 cm above thc

geometric furnace centerllne. Neither excessive furnace power demands or cooling water

temperatures were encountered during the run. The maximum temperature was obtained at

approxima:ely one half of full power.

Furnace Loading - Two molybdenum clad, vacuum welded specimen packets were placed in

the centerline of the furnace and buried in high purity tabular alumina as shown in Figure

D "3. Work thermocouples 6 and 7 were sandwiched between the specimens and the rema;n-

ing work thermocouple, No. 8, was placed in the furnace center at the 7one 1, 2 interface.

Tabular alumina was filled to within 1.3 cm of the alumina furnace lid and fiberfrax was

packed into the remaining gap.

71rconla was packed into the area beneath the steel "hat", topped off with fiberfrax.

Zirconia was packed above the steel hat to near the top of the vent tube and again covered

w;th a layer of fiberfrax. The specimens were wired into a 0. 157 cm (.062-1nch) diameter

molybden , wire sling, reinforced with 0. 051 cm (. 020-inch) tantalum wire. All parts were

handled with white gloves and the autoclave was maintained at 50°C prior to loading by

circulating the cooling water with the heat exchanger inoperative. _

Initial Bakeout - Low amperage set'ings were used to heat the furnace to 360°C, 200°C part

temperature, during evacuation. P,'essureincreased to 700 Mat the vacuum pumpand event-

ually dropped to 400_. Cooling water ten,oerature was 36°C.

Law Temperature Heating - The autoclave was backfil' ' 03,ea with 82.7 x 1 _-'/,._m2 (12 psi)

helium. The initial heating rate was 100°C per hour to approximately 680°C furnace temper-

ature, 650°C part temperature, At 650°C, the power was reduced and the chamber evaucated

for 12 hours.

Initial Run- The chamber pressurefell to 125Mfollowing the 12 hour evacuation. Part tem-

perature remained at 400°C. The chamber was backfilled to 82.4 x 103 N/m 2 (12 psl)

helium and heated to 730°C specimen temperature. The low pressurecompressorwas run to

D-12
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F_aureD-3. Hfgh Temperature Autoclave Furnace
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57.2 MN/m 2 (8,300 psi). After 1 hour at approximately 740°C specimen temperature, the

compressor was stopped and the furnace power was increased. The temperature and power

history is shown in Figure D-4. The heating rate exceeded 300°C per hour to a specimen

temperature of 1060°C, at which point the compressor was again turned on. The compressor

lagged considerably behind the heating rate and a specimen temperature of 1280°C (averagel

was reached at 93 MN/m 2 (13,500 psi) at 1400 hours as is shown in Figure D-5. The pump-

ing continued until 1541 hours at 194 MN/m 2 (28,100 psi) a'_d 1270°C soecimen temperature.

At 1430 hours a temperature instability insued, apparently due to internal convection currents,

and the specimen temperature dropped. From 1541 hours to 1719 hours an attempt was made

to stabilize the furnace temperature. An average part temperature of 1315°C was reached

with top center zone temperature of 1469°C at which point furnace temperature was reduced

as shown in Figure D-4. The total furnace power requirement was 60 KW or approximately

one half of the total available.

Cooling - The furnace was cooled by gradually reducing each zone power 5 ampsevery 5

to 10 minutes. At 2100 hours the furnace pressurewas 134 MN/m 2 (19,500 psi) and the

specimen temperaturewas 20°C.

AtmosphereQuality - The furnace helium atmosphere was pumpedto storage to a chamber

pressureof 13.8 MN/m 2 (2000 psi). A helium gas analysis including a massspectrometer

sample was obtained. A comparisonof inlet and outlet gas is shownbelow:

Helium In Helium Out

Local Instruments(A) Local Instruments(A) MassSpectrometry

Oxygen 3.5 ppm 132 ppm 200 ppm

Water 4.5 ppm 249 ppm (not measured)

Nitrogen 900 ppm

Carbon Dioxide 100 ppm

Hydrogen 200 ppm

Organlcs <100 ppm

(A) Lockwood & McLorle oxygen gage _

CEC Dissoclatlon Cell (H20)

D-14
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The helium gas analysis showed the llne filters and molecular sieve tram to be effective in

removing impurities, including pump lubricating oil. It was expected that a subsequent run

on the same furnace would produce less atmosphere contamination due to curing of cements,

solvent removal, etc.

Specimen Condition - The molybdenum specimen and wire was bright and clean. The tanta-

lum support wire, however, completely disintegrated and subsequent analysis indicated the

remains to be To203 and TaC. Apparently the small partial pressure of hydrogen prevented

the molybdenum from oxidlzlng. Post-cycle study of the molybdenum container cans found

them to be leaking through small cracks adjacent to weld areas (llp weld). It was hypothesized

that the oxygen envlronment of the autoclave gas was leading to hot tearing of the molybdenum.

Tantalum alloy and zirconium chips to getter oxygen were prepared for the next cycle, as

were folJ baffles for the furnace to prevent gas circulation through a chimney effect. Metal-

Iographlc examination of the diffusion couple junctions revealed little if any welding.

Work Thermocouple Fracture - All 3 pt-6Rh, Pt-30Rh work thermocouplesof 0.050 cm

(. 020-1nch) diameter were fractured. Thermocouple No. 6 fractured during cooling at approxl-

mately 1240°C. An examlnatlr_n of the fractures showeda brittle intergranular fracture although

the _naterial is ductile at room temperature. Reducingatmosphereproblems such as _illcon or

alkaline earth metal attack were suspected.

_ Temperature Control - As is shown in Figure D-6, the power input varied linearly with temper-
C

'/ ature as is typical of a conductive heat lossfurnace. The 5 zone furnace was manually con-

trolled using amperage settings on SCR power units. With the mar!ied increase in molybdenum
furnace element resistancewltF, temperature, the po'_verinput varied even more than the 12

relatlomhlp since resistance was also increas,'ng with temperature. Figure D-7 cart,pares the

power input of zone 5 wltfl amperage setting. Thus power input control was very sensitive

arid the lock of watt meter readings resulted in somehesitancy at the higher power levels

to prevent overloading the windings arid exceeding temperatures. It was recommended that

watt meters be imlalkld (lilly power input corltrollen) for future furnace rum to safeguard 1
¢1

the furnace and speclmem.

Table D-Ill summarizesthe test cycle.
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Table D-Ill. Zone Power Input versus Part Tem,oerature

Power KW
FurnaceZone Number Totc_l Part Temp.

Time ! 2 3 4 5 KW °C

732 1.02 .83 .44 .59 .88 3.76 398

833 1.86 1.88 3.50 3.88 5.44 16.56 398

1133 7.88 5.40 4.31 4.57 5.30 27.46 750

1233 8.25 9.17 9.85 9.95 10.40 47.62 752

1333 11.40 10.80 12.70 12.50 12.40 59.80 1060

1433 8.49 10.80 11.20 7.40 1304

1533 6.89 7.64 11.80 6.46 16.50 49.29 1272

1633 11.30 9.46 14.70 4.96 17.90 58.32 1286

i705 6.87 5.94 11.90 4.65 19.70 49.06 1332

, 1735 4.00 3.67 8.60 3.37 13.50 33.14 1282

1833 2.24 3.65 7.11 3.90 5.44 22.. ' 932

1935 -- 1.48 3.18 1.20 1.34 7.20 418

2035 -° .73 1.14 .61 .78 3.26 90 :

,h
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A second test cycl,, of the high temperature eutoclJve furnace was made with 2 sealed moly-

bdenum containers of HIP-weld specimens. Two problems of the init:-_l run, temperature uni-

formity and atmosphere purity, were corrected. Rapid heat;ng and cooling was obtained with

a short (40 minute) soak time at temperature and the molybdenum containers survived the high

pressureswithout rupturing. The moisture content of the post test helium was 11 ppm as com-

pared to 250 ppm on the previous run. At the end of the soak time a maximum temperature

differential of 6°C was observed between the center 3 zones. Difficulty was again experienced

with the Pt-6 Pt-30 Rhwork thermocouples with 2 of the 3 failing at 1300°C on the heating

cycle and the remaining couple failing at 1030°C during cooling.

Furnace Loading - Two molybdenum clad, vacuum welded packets of diffusion couple materials

were again prepared, but with short sections of molybdenum and tungsten wire used to fill the

small void volumes inside the packets. Thls modiflcatlon_ which was made to reduce the

extreme molybdenum container deformation into the void volume, was of questionable value

since the total void volume, although considerably reduced, was made mc-e tortuous in ch'_r-

acter.

The 0.635 cm (1/4-inch) thick specimen packets v re placed into a 7.6 cm O.D. x 0.318 cm

wall x 15.25 cm long (3-1nch O.D. x I/8-inch wall x 6-inch) molybdenum cyl|nder to provide

protection from the autoc lave convection atmosphere and to improve temperature unlformlty.
I

The packets were wrapped in tantalum foll with 2 of the 3 work thennocouples sandwiched

between them. Several gramsof T-111 machine chips were placed in the cylinder bottom as

a getter and the excess cylinder volume was filled with less than 80 mesh alumina insulation.

: A tight fitting molybdenum lld was placed on top with a "1.318 cm (1/8-1nch) hole for thermo- ,

couple penetration.

The 7.6 cm (3-inch) cylinder was placed 30.5 cm (12-1nches)above the furnace centerllne

since the previous run had indicated an overall temperature gradient biased toward the top.

_ Figure D-8 showsthe specimenand work thermocouple Nos. 6, 7, and 8 placement.

¥

#

/
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Zone 1
Tungsten foil Nos. 3 and 4

Molybdenum cyl inder
(7.6cmdia. x 15.25cm)

Zone2

< 80 Mesh Alumina

Zone3

Tungsten foil No. 2
152.5 cm (60 in. )
5 zones

227 gins (8 oz. ) Tantalum chiDs

Zone 4

Tungsten foll No. 1
t

Q= Thermocouple Position _

! Figure D-8. Au_'_clave Furnace
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The previous unstable furnace temperature distribution was assumed to be due to vertical con-

vection currents of high pressure helium and four b_ffles of 0.0051 cm (.002-1nch) tungsten

foil were inserted as shown in Figure D-8. Two hundred grams of T-111 machine chips were

placed above the first baffle to getter furnace atmosphere impurities. An estimate of the total

quantity of getter required was calculated from an estimated total impurity level of 500 ppm

oxygen equivalent from the initial run and assuming Ta20 5 was formed.

(5600 ft. 3 helium) (500 ppm) = 2.8 ft. 3 oxygen (79.3 I)

(2.8 ft. 3) (.089 Ibs./ft. 3) -- .25 Ibs. oxygen (113 gins)

Ta20 5 requires 360/80 = 1.10 Ibs. tantalum (500 gins)

Approximately 680 grams (1.5 Ibs. ) of T-111 chips were placed within the autoclave, inc luding

the lower baffle, the interior of the molybdenum cylinder and at the furnace top "mmedlatelv

beneath the steel hat. A post test evaluation of the chips showed a general embrittlement

but not complete oxidation.

Furnace Run - A preliminary bakeout similar to the initial run was used including a low tem-

perature (360°C) vacu,,m bakeout, a one atmospherehelium bakeout to 650°C followed by a

twelve hour evacuation and a final rapid excursion to the HIP-welding temperature.

The HIP-weldlng cycle was begun with a part temperature of 425°C. A heating rate of .0°C

j per hour was maintained to 1400°C followed by a 10 minute hold and a cooling rate in excess

of 300°C per hour. As shown inTable D-IV, excellent temperature uniformity was obtained

at the maximum temperature. The temperature inertia of the furnace produced a higher than

desired temperature for the specimen. A planned 10 minute hold time was not required since

the specimen remained over 1400°C for 40 minutes (due to thermal inertia).

Manual amperage control of the 5 zone furnace was again used requiring constant monitoring

by 3 operators.

, The helium pumpswere initiated at 7500C and pressurized to 193 MN/m 2 (28,000 psi)as

• shown in Figure D-9.
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Table D-IV. HIP-Weldlng Run No. 2 Pressureand Temperature

Temperature (°C)

Time Pressure Zone 1 Zcne 2 Zone 3 Zone 4 Zone 5 1"C6 TC 7 TC 8

6:45 15 390 452 365 285 255 430 427 420

7:00 15 440 510 400 320 300 460 446 440

7:30 15 602 650 500 452 466 572 552 550

8:00 15 718 758 634 617 644 679 662 659

8: 30 2,8401 779 819 770 767 755 782 779 766

9:00 8,300 920 930 876 895 822 860 847 835

9:30 13,790 1110 1085 1026 1033 954 993 980 969

10:00 18,650 1215 1229 1183 1201 1130 1127 1120 1106

10:30 23,200 1260 1309 1284 1313 1084 1234 1234 1219
2 2

11:00 28,100 1317 1324 1305 1356 1039 1300 ......

11:30 28,100 1434 1433 1412 1446 1074 1363

11:42 Reached 1400°C on T. C. No. 6, start 10 minute hold

11:45 28,100 1463 1496 1477 1484 1089 1417

11:52 28,160 1455 1502 1496 1500 1098 1441

, 12:15 27,880 1326 1403 1356 1390 967 1427

12:30 27,500 1259 1334 1252 1310 804 1375

13:00 26,600 1151 1218 1095 1166 852 1262

13:30 25,420 996 1054 923 950 370 1116

13:45 24,910 929 976 852 831 300 1034 LostT.C.)

:: 14:00 --- 823 859 746 673 205

1. 8:14 compressoron

2. T.C.' s 7 and 8 failed at 10:48
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Analysis - Post HIP-weld evaluation showed both specimen packets to be completely compressed

with no fractures. The tantalum foil wrapping was embrittled and partially oxidized. The

powdered alumina insulation was partially slntered and was removable inchunks. The sln-

tered, sol'd condition of the insulation possibly contributed to a reduction in helium convection

currents. The three work thermocouples were completely destroyed during disassembly, being

immovable in the partly slntered alumina. It was decided to include molybdenum protection

tubes in future cycles for the work thermocouples to prevent the thermal strain induced

fracturing of the platinum couples.

C. Specimen Condition

Figure D-10111ustratesthe HIP-weld test pieces prior to the second autoclave cycle. The

tungsten was wrapped with small diameter . 00508 cm (. 002-inch) tungsten wl,e to serve as

interdlffuslon, original interface makers during the diffusion analyses. Figures D-11 and D-12

demonstrate the post HIP-weld cycle appearance of the molybdenum container can, and the

deformation which occurred.

Post HIP-weld cycle helium leak checks (after a brief pressurization period} showed the molyb-

denum cans to be leak fight. Metallographlc observation of the bimetal interfaces found

good welding for all of the material combinations. These observations are presented in

' Table D-V. Figures D-13 through D-17 illustrate the interfaces involved and the wire markers.

These figures are also presentedto illustrate the deformation and penetration of the wire

markers. While a quantitative relationship between wire deformation ,Jr penetration, and

material strengthsor hardnesscould not be resolved, the relative relationship between these :

parameters can be qualitatively viewed in the figures. Quantitative resolution of this effect

could provide a better understandingof the HIP-weldlng processand indicate whether or not

the small wires acted to enhance or retard the welding capabi!ity of the surfaces.

!

f
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Table D-V. Metallographlc Observationo _Weld Interfaces

W-Cb 100% welded 1, no voids along interface

W-Cb/1Zr 100% welded, no voids along interface

W-Ta i00% welded, no voids along interface

W-Ta/IOW 95% welded, small voids along interface

W-T/111 95% welded, small voids along interface

W-W/25Re 75% welded", small voids along interface

W-ASTAR-811C 75% welded 2, small voids along interface

W-W/20. 1Mo/30.9Re 95% welded, small volds along interface

W-Mo/5ORe 95% welded, small voids along interface

W-Re 95% welded, small interdlffuslon zone present (at I O00X)

W-W 100% welded, no interface discernible

All molybdenumsurfaces (i.e., all couple interfaces with molybdenum) 100% welded.

1
Subjective evaluation of relative surface area welded. Evaluation from visual scanof interface.

21nclicates50% welded in one can, 95% in other can.
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Flgure D-14. HIP Welds - Tantalum Series (400X - not etched)

D-32

#

q975002q37-068



W

Interface

T-111

(d)_ J
_ W

(

\
Interface

" ASTAR 811C
" I

o
o

Figure D-I5. HIP Welds - Tantalum Series (400X - not etched)
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Figure D-16. HIP Welds - Rhenium Series (400X - not etched)
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Figure D-17. HIP Welds - Rhenium Series (400X - not etched)
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IV. HIP-WELO CYCLES

A. Two Weld Cycles

Because of the unpredictable furnace life (one cycle to 1500°C was guaranteed by the furnace

vendor) all of the diffusion couples were loaded and run at the same time. Two previous runs

had been made, the second of which was very successful with excellent temperature control

in the center three furnace zones, 91.5 cm in length, and no problems with leaks in the molyb-

denum specimen packets. Borderline welding in the higher strength and melting point couples,

W-Re, W-Mo-Re, indicated that slightly increased time or temperature over the 40 minutes

at 1440°C would be beneficial. Twelve packets each were placed in four molybdenum buckets

to accommodate a total furnace load of 48 packets. Figure D-18 shows the furnace load

arrangement. Two layers of tantalum foil were used to llne the molybdenum buckets to getter

the impurities in the helium pressurizing gas. Tantalum alloy machine chips were used inside

the foil layer as an additional getterlng agent. Approximately 0.68 Kg of tantalum alloy

chips were also placed at three locations within the granular alumina insulation as the f_ mace

load was packed to provide additional gettering capacity. The furnace was sealed and ;nsu-

lated as shownin Figure D-19. An additional 0. 15Kg of tantalum chips were placed at the

furnace top and on the alumina furnace lld. Zirconia powder was poured to within 2.5 cm of

the top of the steel "hat" and the remaining space was filled with "fiberfax." Zirconla powder

was also pouredover the hat to the mouth of the small plug. A thorough purging and evacua-

tion cycle was performedas shown in Figure D-20. The furnace was initially evacuated with

a 7. 1 I/sec mechanlcal pump, backfilled to 6.9 x 103 N/m 2 (lpsig) helium, and heated to

200°C to outgas the furnace load. Following a 12 hour pumpdownthe furnace was reheated

to 350°C under 6.9 x 103 N/m 2 helium and aga'n evacuated for 12 hours. Typical pressures ii

at the mechanical pumpwere 251sfollowing the12 hour evacuation.
"4

To avoid excessive flexing of the autoclave "O" ring seuls, the initial furnace bakeout at

200°C was clone under vacuumand a single helium purge of 20.6 x 103 N/m 2 (3 psig) was
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used during heating to300°C. The initial 200°Cand300°Cbakeouts were accomplished

without difficulty and the autoclave was pressurized to 69 x 103 N/m 2 (10 pslg/helium and

the 250°C heating rate to 1400°C was begun (Figure D-20). At a work temperature of 700°C,

pressurizing to 193 MN/m 2 (28,000 pslg) helium was begun at a rate to reach maximum

pressure slightly before maximum temperature. No difficulties were encountered until full

pressureand a work temperature of 1250°C were reached, at which point the SCR power supply

for furnace zGne 4 began to overload and blow fuses. No apparent furnace short circuit._, were

observed and the entire power supply was replaced in 25 minutes with the other furnace zones

at power to mainta;n as high a furnace temperature as possible. At the approximate time the

replacement power supply was installed and zone 4 was brought back on line, a marked drop

in resistance was observed in zones 3, 4_ and 5. The resistance decrease prevented sufficient

power from being developed to maintain furnace temperature at the maximum amperage avail-

able and the temperature of the lower zones gradually decreased. In an attempt to salvage

the committed furnace run the 193 MN/m 2 (28,000 psig) helium was bled off to 1.38 MN/m 2

(200 pslg) to decrease the heat lossand thus reach the required temperature of 1440°C. After

a false start of pressurizing to 6.9 MN/m 2 (1000 pslg), at which time the furnace temperature

again decreased, the helium was bled back to 138 x 103 N/m 2 (20 pslg) and the work was

heated to 1380°C at which point pressurizing was again started. During pressurizing, a maxi-

mum temperature of 1400°C in the work zones was obtained at 138 MN/m 2 (20,000 psig).

At this point the temperature was gradually reduced while pressurizing was continued to

165 MN/m 2 (24,000 10slg). Figure D-21 shows the temperature and pressure cycle obtained.

Heating was not continued because of the danger of excessive diffuslon zone growth during

welding.

_ Figure D-22 showsthe resistance versustemperature of a molybdenum furnace zone winding

which behaves in a normal mannerand closely follows the change in resistance with tempera-

ture reported for molybdenum, Figure D-23. Figure D-24 is a similar curve for furnace zone

3 which, like all the three lower furnace zones, showeda sharp drop in reslstance at high
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temperature and essentially produced a different resistance versus temperature curve. On s

cooling to lower temperatures (the numbered data points are in time sequence/a return to

normal resistance (lower curve) was seen on data point No. 45 for zone 3. The top two

furnace zones, 1 and 2, displayed the normal linear r,:sistance - temperature relationship

throughout the run and no troubles were encountered in maintaining adequate furnace power.

Subsequent examination of the furnace following the run indicated that all of the 5 furnace

zones had normal resistance bot',, TLrough the winding and from winding to grou .d. Two

power leads were observed to be very close to the grounded furnace shell and the leads were

moved and insulated with gJasstape in the view that the leads had caused the short at high

temperature.

Reasonfor ResistanceVersusTemperature Plots

Several other relationships to furnace temperature, such as amperage, voltage, and power,

were evuluated before using the winding resistance. Figure 0-25 showsamperes and KW

versus temperature and Figure D-26 shows voltage versus temperature for zone 1 on HIP run

No. 2. These figures may be compared to the resistance versus temperature plot for the same

zone and HIP run, Figure D-22, to see the lack of correlation for the commonly used furnaCe

control factors.

Gas Analysis

The helium gas was monitored by local oxygen and moisturemoniturlng instrumentsand also

by massspectrometeranalysis of a sample bottle and the results for both are shown in Table D-Vi.

Analyses were obtained on the helium before and after the HIP-weld run. The results indicated

a general high impurity level of nitrogen which wasapparently nonreactive to the getter mater-

ial placed in the autoclave furnace.

Specimen Condition

The molybdenumbuckets and packet_ were clean following the HIP-weld cycle with no evidence i

of contamination. The tantalum foil in the buckets was bright but generally brittle. Sectioning :i

!
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Table D-VI. MassSpectrographic Analysis of Autoclave
Gns for HIP-cycle No. 3

Impurity Post HIP-cycle HIP-cycle No. 32

No. 11 Prior to Cycle Post Cycle

N 2 900.0 ppm 145.0 ppm 175.0 ppm

CO 2 100.0 55.3 14.6

d 2 200.0 29.3 22.5

CO 22.5 66.0

CH4 1.6 5.6

0 2 200.0 0.1 4.2

A 1.2 3.4

C2H6 --- 1.4

Local ,o_alysis (During HIP-weld Cycles)

H20 249.0 10.5 10.0

0 2 132.0 0.6 0.2 :

1
Non-gettered furnace loading

2
Gettered furnace loading, packed to remove chimney effect _'_

4. t
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of several key packets indicated that the pressure and temperature combination obtained was

not sufficient to produce complete welding of all but the columbium junctions The molybdenum

packets containing only columbium were segregated and the remaining packets were leak checked

and, if necessary, resealed in an outer layer of 0.038 cm thick tantalum foil in preparation for

an additioK JI run. Table D-VII presents subjective analysis of the degree of welding in a few

selected containment cans. Only cans containing Cb, Cb-lZr couples were removed From the

cycle. The remaining cans were scheduled for a repeat HIP-weld cycle.

cause of the difficulties e.,countered in HIP-cycle No. 3 in maintaining the temperature of

the lower zones, ;',,e entire furnace load was shifted upwards 15.2 cm as shown in Figure D-27.

Tantalum chips were again used to getter the pressurizing gas as in the previous run. A pur-

ging cycle similar to the previous run was used as shown in Figure D-28. Because of the de-

crease in heating rate as the helium pressure Tsincreased, the furnace was to be heated to

1200°C at 69 x 103 N/m 2 (10 pslg) helium instead of 700°C as in the previous run. The

heating cy:le began normally and the resistance versus temperature curves for the 5 zones

were normal, with no sign of the parallel low resistance path observed during the previous

run. At 900°C, zones 3 and 4 shifted abruptly to the shorting mode, similarly to the previous

run shown in Figure D-24. Helium pressurizing was begun. The decrease in resistance produced

a power loss in zones 3 and 4 and the heating rate decreased uncontrollably. At 1100°C,

zone 5 also shorted and as in the previous run, all 3 lower zones were deficient in power.

Figure D-29 shows the response of the specimen temperature and pressure as a function of time.

A gradual decrease in temperature was observed in the lower furnace zones in spite of opera-

tir" ._tmaximum power levels. Zone 2, which contained molybdenum buckets 3 and 4, was

slightly overheated because of an unavoidable delay in estimating the temperature. At

approximately midway through the run, after all other attempts to increase the lower zone
4'

i_ temperatures had failed, the 50 ampere power input fuseswere shorted with copper bars and

a maximumof 68 amperes was usedwhich gradually increased the zone temperature. After

20 hoursof operating, additional instabilities in power control and transformer overhea_."' ,_g :i

made further tests hazardousand the run was terminated. _

i
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Table D-VII. ObservedWelds in First Autoclave Cycle

1
Can Number Junction Degree of Welding

lb(B) Non-leaker 2
*W/Cb 100%
W/Ta Fall 95%
Cb/Ta Fall 100%
Mo/Ta Fall 100%
W/Ta-10W3 50%
Mo/Ta-10W3 100%
Cb/Ta-10W3 100%
Ta/Ta-10W3 100%

l j (B) Non-leaker 2
W/Ta Fall 100%

*W/W-25Re3 50%
W/Ta-10W 50%
To-10W'S,Afl-25 Re 100%
W/To-10W_ 100%
Ta FoII/W-25Re 100%
W-25Re,/W-25Re 50%

| j (A) Non-leaker2
*W/Re 10% :
W/Ta Fall 100%
Mo/Ta Fall 100%
W wire/W 100%
W wire/Ta 100%
Ta Foil/Mo 100%
Ta-IOW/Ta Fall 100%

6B Leaker2
*W/W-25Re 0%
*W-25Re/Re 0%
Rw'Re 95%
Re,/TaFoil 95%
Ta Foil,/V/-25Re 100%

2i (B) W/Ta Foil Leaker2 100%
W-30.9 Re- 20. 1 Mo/Ta 100%
W-30.9 Re- 20. 1 Mo/Mo 100%
W-30. 9 Re- 20. 1 Mo/W 0%

*Cou.pl• Components
_ ISublechve Evaluatlonfromscanof junctlonat lOOX, 400X
: 2Helium massspectrographleak detector

3To-lOW filler rod in cans D-50

$
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Temperature Control

Work thermocouple No. 8 was shorted during the bakeout procedure and the adjacent thermo-

couple for Tone 2 was used to monitor the temperature of molybdenum buckets 3 and 4. At

less than six hours into the run, however, the zone 2 thermocouple along with those of all other zones

but 5, were lost. (See Figure D-27 for thermocouple locations). The temperature of zone 2

was then estimateJ using the resistance versus temperature relationship developed in previous

non-shorted runs shown in Figure D-22. As shown ;n Figure D-29, a temperature overshoot

occurred in zone 2 before the resistance - temperature estimation was used.

Gas Analysis

Local oxygen and water vapor monitoring equipment were employed to scruple the prussurlzlng !

helium gas before und after the autoclave run. Mass :pectrometer analyses were not available

because the sample bottles were still in use from the prevlous HIP run. The impurity analyses

obtained are Ii.,ted below:

Oxygen Water

Prior to Run 0.5 ppm 9 ppm

After Run 0.3 ppm 24 ppm

These values do not differ appreciably from the analyses made during HIP-weld cycle 3.

Furnace Condition

As shown in Figure D-30, a major meltdown occurred in the alumina furnace wall at the

jucture between zones 3 and 4. The melting occurred adjacent ,o the zone thermocouple

protection tubesand melted and cle:troyed all the heater thermocouples above the melt zone.

Zone thermocouple no. 5, which is located below the melt zone (s_e Figure D-27) alone

survived the HIP-weldlng run. The wall melted through and destroyed the zone thermocouple; 5

early in the run. The melted zone, which began in the furnace wall adjacent to the bottom

• of bucket no. 1, did not extend to the bucket, but slumped downward into zone 4 and the ;

¢'
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Figure D-30. Illustrotlng furnace melt-through across zone thermocouples
(in protectlve molybdenum tube sheaths) between zones

three and four in autoclave HIP-weld furnace.

_RoDucmmn,_ oP

D-55

1975002137-091



ceramic plate at the bottom of zone 4. The molybdenum bucket in the no. 4 zone did not

appear to be overheated, which agreed with work thermocouple no. 6 which indicated a maxi-

mum temperature of 1475°C near the end of the run.

The Condition of the Mol,/bdenum Furnace Elements

Following the HIP-weld cycle, the resistance or the five furnace zones was measured as was

the resistance to ground. The resistance was normal in both cases indicating the winding was

intact and no direct short to ground had occurred. Apparently the molybdenum furnace

windings operated normallyup to a temperature of 900 to 1000°C, at which point the ceramic

coil support became conductive and established a parallel current path. At higher tempera-

tures the significant power produced in Ihe shorted region fused the alumina core and insula-

tion. Upon cooling to lower temperatures, the electrical resistance of the ceramic returned

to normal.

Judging from the similar resistance behavior in HIP-weldlng run no. 3, the shorting mode

began duri.g the earlier run and was repeated in HIP-welding run no. 4. Since the melting

point of impure alumlna is about equal to the expected heater windlng temperatures (2100°C),

contamination of the alumlna coll form or insulatlon was suspected as markedly lowering the

coil meltlng point.

The high purity commercial alumina which was used for the furnace may have decreased in

resistance at the higher eperatlng temperatures to the polnt where signlflcant electrlcal

shorting and consequent heating occurred. Figure D-31 compares the measured electrical

resistance of varlous aluminas whlch shows a difference of 103 between laboratory grade

alumlna made from hlgh purlty water and 99.996% pure alumlna and normal "high purlty

alumlna. " Contamlnation during the furnace operation could further reduce the insulating

properties.

i
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Future HIP-We Idi ng Capabi llties

The top two furnace zones have operated saKsfactorily, providing a uniform i_ot zone of

approximately 30.4 cm. In the event that a larger w_rk zone is required, the Westinghouse

Researchand Development Laboratory is installing a molybdenum resistance heated autoclave

furnace with a work zone 16.5 cm in diameter by 50.8 cm long which would be available on

a toll basis. A self-supportlng molybdenum heater structure will be used on this unit to avoid

the electrical breakdown problems with impure alumina. A maximum temperature of 1700°C

will be obtainable.

B. Diffusion Couple Condition

A complete photographic record was made of the specimen and furnace condition as the auto-

clave was unloaded. The molybdenum buckets and specimen packets were clean. The tanta-

lum sheet outer cavers used on the packets whlch leaked from the prior cyc le and had been

cleaned and resealed for this cycle were clean and apparently well deformed by the welding

run. The tantalum enc lased packets were generally brittle and 6 aut af 7 indicated leaks

following this weld.cycle. Figure D-31 shows the post-HIP-weld cycle appearance of bucket

number 2, with the T-111 getter machine chips, tantalum foil, etc. removed, and the place-

ment of diffusion couple molybdenumcans in the bucket. A close-up view of three molybdenum

cans from bucket number2 is presented in Figure D-32. Figure D-33 presentsa layout view of

all of the molybdenumcanned diffusion couples after the HIP-weld cycle.

The molybdenum cans in Figure D-34 were all helium massspectrograph leak checked, and

the couple comblnal|ans were inspected metallographlcally far diffus_an interface welding.

Table D-VIII presentsthe results of this examination. Several ef the more difficult to HIP-

weld .:,mbinations (i.e., W/W- 25 Re, W/ASTAR 811C, W/W-20 Re - 30.9 Ma, etc. ) as

well as those combinatlom which did not weld due to can leakage, were scheduled for hat

presswelding. The remainder were scheduled far diffusion couple preparatlan far age treat-

merits,
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Table D-VIII. HIP-Weld Y_e_dof D|ffus|on Couples from Autoclave Cycle 4

Can Couple Post-Cycle % Welded Acceptable Can to be
Number Combination He Leak (Subjective for Repackaged

(PrimarySide)1 Check of Evaluation) Ageing for Hat-Press
X,/Y Contalnment and Weldi ng of

Can2 Analysis Couple

]a Warc/C b O K 100% Yes -- -
.-3

lb W/Cb-IZr OK 100% Yes ---

lc W,/Ta-10W OK 50% No Yes

ld _/'Ta OK 100% Yes --

, le W/'T-III OK 60% No Yes

If _/Astar811C OK 50% No Yes

lg W/W-25Re OK 0% No Yes

lh W/30.9Re20. 1Mo Leak 50% No Yes

1i W,/_-SNle Leak 0% No Yes

l j W/Rep Leak 30% No Yes
, ,, , m

, ¥o, --
; 2b WCvD/C b- 1Zr OK 100% Yes --

_ 2c WCvD/Ta OK 100% Yes --

::_ 2(:1 WCvD/Ta- 10W OK 95% Yes - =

2e WCVD/I"-III Leak 0% No Yes

2f WCqD/Astar811C Leak 0% No Yes

2g WCVD/W-25Re OK 50% No Yes

•_ | '.I all _ III I

;;' 1Secondarys|cleof canscontain backupcouples ""

2Couplecanspost-autoclavehelium leak checked

IndicatesArc CastW

_ 4WcvD |ndlcatesCVD formedW ,.

¢

" iiiii i , _- -
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Table D-VIII (Cont'd.)

Can Couple Post-Cycle % Welded Acceptable Can to be _
Number Combination He Leak (Subjective for Repackaged ,_

(PrimarySide)1 Check of Evaluation) Ageing for Hot-Press

Yv/Y C_ntai_lt_ent and Welding of g
Can Analysis Coupling

|l •

2h WCv 30.9Re20. 1Mo OK 50% .No Yes •

21 WCVD/'Mo-50Re Leak 5% No Yes

2i Wcvl_e F OK 95% Yes --
/

7 3a Rel/Cb OK 100% Yes -- _.

_. 3b Rep/Cb-lZr OK 100% Yes -- _ _

!' 3c Rep/ra OK 100% Yet -- :

3d Rep/Ta-1[]W OK 100% Yes --

i 3e Rep/r-III OK 90% Yes -- "

' I _¢ !3f Rep/Astar811C _ OK 40% No Yes

_: 3g Rep/_V-25Re OK 90% Yes -- i "

: 3h Rep/WRep/'_V30.9Re20.1Mo OK 100% Yes --

,!

4a ReCvD/Cb OK 100% Yes -- ,

: 4b RecvD/Cb-lZr OK 100% Ye= --

4c ReCVD/To OK 100% Yes --

._ 4d ReCvD/Ta-IOW OK 100% Yes --

4e ReCVD/I"-III OK 100% Yet --

4f ReCvD/ASte'811C OK 50% No Yes

_ 4g ReCvD/W-25Re Leek 50% No Yes

:: 4h RecvDAN30. 9Re20. IMo OK 100% Yet --

; 41 lec vD/MO-50Re OK 100% • Yet --

: 4j ReCVD/W O}( 60% No Yet

T
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C. Hydrogen and Interstltlal Analysis

Approximately 20 to 30 ppm hydrogen had been measured in the helium pressurizing gas before

and after the HIP-weldlng process. This fraction of hydrogen corresponds to a 27 N/m 2 (2 x

10-2 torr) partial pressure of hydrogen at one atmosphere total pressure. Ar 200 MN/m 2 (2000

atmospheres) total pressure, however, the partial pressure o.c hydrogen is increased to 5.15 x

103 N/m 2 (38 ton') which can result in slgn|flcant concentration of hydrogen in hydr_gen

soluble materials. To prevent hydrogen contamlnatlon of tantalum base alloys, in whlch the

hydrogen solubillty markedly decreases with increaslng temperature, the autoclave pressure

may be released at hlgh temperatures of 1200°C and above. Figure D-34 shows the hydrogen

solubility isobars for tantalum at 138 MN/m 2 (20, 000 psla) total pressure, and 0. 31 MN/m 2

(45 psla) total pressure. HIP run number 4 was held to 138 MN/m 2 (20, 000 psla) while coollng

to prevent thermal contraction stressesfrom rupturing weld surfaces. From Figure D-34,

hydrogen concentrations over one atomic percent, 55 ppm by weight, could be expected in the

tantalum base alloys dependlng on the cooling rate, the diffusion klnetlcs and the availability

of sufflclent hydrogen for the several pounds of tantalum. The effect of hydrogen partial

pressureon the equilibrlum concentration of hydrogen sl.ggests that hydrogen plckup could be

nearly eliminated by reducing the autoclave pressurewhile the specimenswere reduced to a

low enough temperature, say 900°C, to prevent excessive "zero point" diffusion. The molyb-

denum canswere found to trap the hydrogen in the specimens (discussedin a later section),

Also, an immediate pressurerelease could have lead to a number of fractured couples due to

i differential thermal contraction stralns. Hydrogen was subsequently removed from diffusion

: couple alloys by vacuum annealing.

_: Hydrogen, oxygen, and carbon sample chemistries were monitored both before and after auto-

clave cycles to ascertain the effectiveness of the molybdenum contalnment cans. Table D-IX

taken after the second auto_:.ave cycle, showedhydrogen to be the prlnclple interstitial to

i? be Introduced Into the samples. Since the sourceof the hydrogen wasnot fully resolved

(autoclave cycle or post-cycle etch removal of molybdenumcan), a selected group of

¢
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Table D-IX. Comparison of Pre- and Post-HIP Weld Interstitial
Chemish_es From the Second Autoclave Cycle

Interstitial Element (Concentration in wppm)

:" ,Oxygen Carbon Hydrogen
, Couple Material pre post pre post pre post

W (powder met,.) < 50 8 < 50 13 10 --

. Cb-lZr 100 106 < 50 45 3 --

;_ Cb 100 --- < 50 27 2 95

: Ta- 10W 20 33 7 12 2 --

Ta < 50 34 < 30 12 1.5 33

¢

Lq
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materials from the third and fourth autoclave cycles were followed for hydrogen and oxygen.

Table D-X lists the materials and the interstitial constituency followed.

Table D-XI shows that hydrogen is introduced into the diffusion couple materials by the auto-

clave process. Post-autoclave anneallng at 1200°C for 2 hours in a 10-6 torr vacuum was

successful in removing the hydrogen, only on the uncanned (molybdenum removed) couple

materlals.

Since the hydrogen could also be introduced by the nitric acid etch removal of the molybdenum

containment can, a treatment of Cb and Ta sheetswlth molybdenumin nitric acid was made.

_,_ As shownin Table D-XII, the etch removal of the molybdenumdld not introduce hydrogen

_ into the couple materials.
_.

; _: The resultsof the analyses llsted in Table D-XIII for oxygen analysls of the diffusion couple

_ materials befnre and after the autoclave cycle failed to reveal any definite trend for oxygen
'I

contamination. These results are presented in Table D-XIII.

?

2

r ;
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Table D-X. Post-HIPCycle Chemical Analysis of
Selected Diffusion Couple Materials

Material Analysis

1
A. Group I

Ma-50Re H, O
Ta H, O, C
Cb H, O
Ta-8W-2Hf H, O
W-30.9Re-20.1Mo H, O
Ta-10W H, O
W H, O
Re H, O, C
ASTAR-811C H, O

B. Group II 2

Mo-50Re H, O
Ta H, O

- Cb H, 0

Ta-8W-2Hf H, O
W-30.9Re-20.1Mo H, Ob

; Ta-10W H, O
_" W H, 0

Re H, 0
ASTAR-811C H, O

C. Group III 3

Cb (asreceived) H
_:, Cb (etched) H

Cb (etched-vacuumannealed) H
_i. To (m received) H *

To (etched) H
To (etched-vacuumannealed) H :0

_ 1Group *_* I: AsHIP-welded (autoclavecycled)

_ 2Group I_ 10-4 m2
.:._- Ih H Ided andvacuumannealedat 1200°C, 2 hours,at N/ :
-_- (1 ton')

_-i. _,*_ 3Group i *_*
-_-__:i',_'_"_-_.., i Ill: To ascerlolndegreeof hydrogencontomlnotlonby acid etch process. !"S':_-,_'. ' -.: ,,

;'. '1-:_. .. , _.,.. . ..:.....,: ..

• _ ....._ "'_"" ;"............ *'"'_"""": ':'-':_"_""'_"' '.-',-' ,:-" _, _,-_-,: .;-,--_:,L_:o___:.::_ 1 _-
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Table D-XI. Hydrogen Analysis Through the Third and
Fourth Autoclave HIP-Weld Cycles

Material Hydrogen Concentration (ppm by weight) 1

Pre-At 'oclave 2 Pos_-Autoclave3 Pos+-Anneal
Annealed Annealed

Without Can4 In Can:;
ii i IN I

Mo-50Re (L)6 --- 0.7 0.3 ---

Ta (L) 1.5 37.0 0.2 33.0 _)

ASTAR-811C --- 27. 0 0. 5 ---

_) Ta-8W-2Hf (L) 5.0 42.0 0.3 --- _!_
W-30. 9Re-20. 1Mo (L) <1.0 0.4 0.2 ---

Ta-10W (L) 1.7 18.0 0.3 ---

W <10.0 0.5 0.5 ---

Re --- 2.7 1.1 3.0

1 Accuracy for <1 ppm = +0.2
1-2 ppm = +0.3

30-40 ppm = + 3.0+
100 ppm = -5.0

2
Vendor analysis

3 Autoclave at 1440°C for 1 hour, 28,000 I_i Helium, aF1xoxlmately 105 N/m 2 (1 atm H2)
_; (equiv.) /
! 4 Annealed at 1200°C for 2 hou_ at 10-4 N/m 2 (10-6 torr)

:: _ 5 171+1./_thly _ogre_ Rel_, WANL-L-631, November, 1970. (Hydrogen after 2 hours
_ at 900 C, 10-4 N/m '_ (10"v torr) while couples were still in sealed molybdenumcans).

_ 6 L dermtm pmt-_utoclove leok of ccmtalnment con (Helium leak check).

_'t_)_'_-..-."........................., , "_,:--_--.....:,-'"_-_............,- _-- _____ ..... :..... '-_,_,->.o__;:.'t -
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Table D-XII. Effect of Acid Etchingon HydrogenContent
of DiffusionCouple Materials

Material HydrogenConcentration(ppmweight)1
(.080" thick

Sheet) As Received Post-Etch2 Post-Anneal3

Cb 2.4 3.8 1.6

Ta 0.6 0.7 0.8

4-

1 Accuracyfor 1-2 ppm= - 0.3

2 Etchedin 50 HNO 3 - 50 H20 (no HF additive)

_! Etchedwith molybdenumsheetsc'-roped to eochside.

3 Annealedat 1200°C for 2 hoursat 10-4 N/m2 (10-6 ton')

_ g,:

_5.....

_:_., D-70
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Table D-XIII. Ox/gen Analysis Through the Third and
Fourth Autoclave HIP-Weld Cycles

Material Oxygen Concentration (ppm by weight) 1

I're-Autoclave 2 Post-Autoclave 3 Post-Anneal

Annealed Annealed
Without Can4 in Can

Ma-50Re (L)6 --- <5.0 <,5.0 ---

Ta (L) <50.0 34.0 17.0 34.0

ASTAR-811C --- 61.0 27.0 ---

Ta-8W-2Hf (L) <80.0 52.0 39.0 ---

W-30. 9Re-20. 1Mo (L) 4.0 4.0 8.0 ---

Ta-10W (L) <50.0 73.0 92.0 33.0

W <I0.0 <5.0 <5.0 8.0

Re 12.0 15.0 42.0

1 = +2.0i_ Accuracy for <5 ppm
15-20ppm = +-2.0

100-250 ppm = + 15

_ Vendor analysis

3 Autoclave at 1440°C for 1 hour, 193 MN/m 2 (28,000 Psi) helium

4 Annealed ot 1200°C for 2 hour=at 10-4 N/m 2 (10 -6 ton')

5 17th Monthly Pj'_lrat, Repor_t,WANL-L-631, November, 1970. (Oxygen after 2 hours
; at 900VC, 10" N/m" (10"u ton.) while couples were still in sealed molybdenumcon).

°,. 6 L denotes post.autoclave leak of containment can (Helium leek check).

._: D.-71

I "4 _
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V. CONCLUSION - AUTOCLAVE OPERATIONS

Table D-II presents several of the conclusions or recommendations concerning autoclave

HIP-weldlng practice generated during the course of this study. Alth,.,L ,', i,_,. aen pickup

during the autoclave processwas found in this study, it was not deen_:l a problL., since the

diffusion couples were destined for 10-6 N/m 2 (10-8 torr) vacuum ages. Also, although four

autoclave HIP-weld cycles were performed, the molybdenum wound furnace began to degrade

on the third cycle and its failure on the fourth cycle I:revented 100 percent success in weld-

ing the program couples. Those program couples not joined by HIP-weldlng were scheduled

for hot presswelding. The autoclave HIP-we!d process remains, however, as an excellent

low temperature, minimum zero condition interdiffuslon zone width method for massjoining

of couple materials for diffusion analysis.

?
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APPENDIX D: HIP Welding Operations References

1. D'Annessa, A. T., "The Solid State Bondingof Refractory Metals", Welding
Journal Supplement, 1964.
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APPENDIXE. HOT PRESSOPERATION

I. INTRODUCTION

Diffusioncouplematerialswhich were not acceptably joined by the autoclave HIP-weld

processwere joined by hot pressoperations. ThisappendixdescribestheseoperQtions,and

their results.

Table E-I identifies thosediffusioncouplecombinationsrequiringhot pressjoining for

coupleformation. Severalof the couplecombinationswere 50 to 60 percentweldedduring

the autoclaveprocess,but wereselectedfor hot pressjoining to effect 100 percentwelded

iunctlons.

II. HOT PRESSPARAMETERRESOLUTION

Prior to actually hot presscycling the material combinationslisted in Table E-I, several

parameterdeterminationcycleswereperformedon representativematerials. A hot press

die wasfabricatedfromgraphite andconsistedof a 5.1 cm(2-1nch)diameterbasewith a

3.18 cm(1.25-inch) by 1.59 cm(0.625-1nch)rectangularcenterchannel. Thefemaledie !

andthe plungerwereboth3.81 cm (1.50-1nches)hlgh. Hot p _soperationalsequencewas

as FOllows:

• Clean all materialsurfaces(degrease,etch, polish) _:

• Stackmaterialsasfollows:
• Mo sheet*

W
_ Alloy X
' Mo sheet*

Repeatpattern

• "[hestackedmaterialswere wrappedIn To foil with a singleseamat the top

of the package

_ *Molybdenumsheetsfacilitated acld etchseparationof the hot presswelded diffuslon _ _:

:, couplematerlals, i

E-2 I
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Table E-I. D|ffuslon Couple Material Combinations
to Hot PressWeld

No. Couple ID1 Couple Material Combinations

1 1CA Warc cast/Ta- 10W

2 1FA Warc cast/ASTAR 811C

3 1GA Warc cast/W-25Re

4 l lA Warc ,:.ast/Mo-50Re

5 1JA Warc cast/Re _

6 1HA Warc cast/W-30.9 Re-20.1Mo

7 1EA Warc cast/T- 111

8 2 EA W cvd / T-111

9 2FA W cvd / ASTAR 811C

10 2GA W cvd / W-25Re !

11 2HA W cvd / W-30.0Re-20.1Mo

12 .21A W cvd / Mo-50 Re
:_

13 3FA Repowder/ASTAR 811C _'i "

14 4FA Re cvd / ASTAR 811C I
15 4GA Re cvd /W-25Re _

16 4JA Recvd /W i

17 6A-I (KVI)Ta/Ta- 10W/NVI
2

18 6B-I 2 (KVI)W/W.25Re/Re I

19 KVI 2 W/Ta 1

1 See Appendix F. Diffus;on Couple Age�Identification Chart _

2 Programplan to hot press

E-3 ,_.
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• Insert tantalum foil package into dle, die into chamber in hot press

• Evacuatehot presschamber (to 10 N/m 2 (10..3 tort)).

• Compressfoil seam, sample (i.e., vacuum seal toll container) to 19.3 MN/m 2

(2800 psi)

• Backfill chamberwith high purity helium

• Retain constant load while cycling sample to temperature, hold and cool

down

The materials stacked in the first hot pressparameter determination cycle were as follows:

Layer: 1 Ta

2 ASTAR811C

3 Warc cast

4 T-111

5 W-30.9Re-20. IMo

_. 6 W arc cast

i 7 W-25Re

8 W-25Re

9 1"-111

•_ 10 Ta

-_ Since low melting eutectlcs could form at 2300°C, a hot presstemperature of 2100°C was

_' selected. A hot presscycle to 2100°C for 20 minutes at 19.3 MN/m 2 (2800 psi) resultedJ

_ In 100 percent Interface welding of the diffusion couple surfaces (metallograp_Ic

_ observation).

: _ III. HOT PRESSOPERATIONS

' The materlal combination packages of Table E-I were each hot pren cycle welded

_ (Rgure E-I), and pint weld Impected metallographlcally for weld Integrity. All samples

;_,- were found to be 90 to 100 percent welded. Subs_luent diFFusioncouple preparation

_ _1_i_ :;}., Included trimming of tantalum toll Fromlateral surfaces with a cutoff wh_JI and separatlon .
;7: _",i
_ "_:*:i of the welded couples by preferential etch removal of the molybdenumspacer sheets. _'_ .-_

_,_' -_". ' I "
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! 2200

Hot PressCycle SpecimenStack lEA

i 2000 - Area 660" x 1.358" =. 891 sq. in.
:; : (5.75 x 10-4 m2)

_ ]800 Stress2,800 psi--(19.3 MN/m2)
i_ Vacuum17 micronsto 300°C

_ 1600 760 mmUltra PureHeliumfrom

: l 1400 RT ;;

1200

1000

8O0

6OO

400 " j Specimen" Unloaded

200 _._ ' i_o
• 0 l 2 3 -

Time(hours)

Figure[-1. Typical Hot PressCycle Temperature-TimeHistory

I '
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IV. CONCLUSIONS

All diffusion couple material combinations not welded by the autoclave HIP processwere

hot press welded by being subjected to 19.3 MN/m 2 (2800 psi) at 2100°C for 20 minutes.
,_

Randomcheck of several post-hot press interdiffusion zones showed them to be around

6-10 microns (approximately 0.4 mils)_ acceptable as a zero condition for interdiffuslon

"' ageing.

On a comparative basis, autoc lave HiP-weldlng practices produced better diffusion couples,

than hot pressedcouples, in that they were lessdistorted; possessedsmaller interdiffusion

zones; were less likely to be contaminated by carbon or oxygen; easier to prepare and post-

weld section: and, for large numbersof couples could produce welds in one operational cycle.

t

•g_ j !i

?
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_" APPENDIX F. Diffusion Couple Age/Identification Chart

The following tables describe the diffusion couple age schedule identification system

employed in this program. Identification numberswere vibratool scribed (tungsten tip)

into the back face of each welded couple after the coupleshad been removedfrom their

• HIP-weld molybdenumcans. Preliminary annealing of some Ta/W couples at 2650°C for

4 hours (accelerated diffusion condition) showed that surface diffusion effects did not

remove the scribe marks. Post-age examination of all program couples found all scribe

marks to be present and clear.

C

% j
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APPENDIX G

DIFFUSION ANALYSIS

By

F. G. Arcella
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APPENDIXG. Diffuslon Analysis

Thisappendixrevlewssomeof the fundamentalsof solld state diffusionanalysis,and

extrapolatestheseprln¢iplesto englneerlngconsiderationsapplicable to this program

of study. Priorto reviewingmathematicaltreatments,however, there shouldbe a revlew

of laboratorypractice, slncehandlingandageingpmctlce can seriouslyaffect the

boundaryandanalytical conditionsnecessaryfor accurateanalysis.

E'
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I. AGE AND PREPARATION PRACTICE

Accurate diffusion information can only e obtained through careful adherence to pr_ctlce_

lean,ed through experience. Laboratory practice and sample handling techniques can

seriously affect the value and acceptability of the information generated in a dlffu_ion

study. Consideration of the laboratory practices and analytical techniques necessary to

analyze the diffusion couples of this program included:

• A diffusion couple characterization. 11_ecouples were characterized
by phasediagram studies to ascertain if multiple interphasesexisted,
analytical techniques required, temperature limits, etc.

• Couple dlmenslom. Preprogramselection of couple Jimenslonswas
_- analyzed.

• Pre-age|ng condition. Metallographlc, mlcroprobe, mlcrohardness,and
_ bond integrity characterization of bonded couples before ageing supplied

necessaryinformation for post-age analysis.
_r

• Diffusion ageing anneals. Critical considerations concerning couple
cleanliness, couple mounting in the furnace, mount geometries, heat
up time (ramp), and quench time to minimize couple contamination
and insure accurate calculation of lnterdlffusion coefficients. (See

Appendix K. Error Analysis).

• Post-ageing metallogral_y. Couple preparation in terms_,rsectioning,
mounting, polishing, metallagral_ic impection including grain size
analysis, and couple cleanliness was mode to insure accurate microprobe
analysis. (See Appcmdix K. Error Analysis).

• Mlcraproi.,e analysis. Couples mustbe clean, properly mounted, and the
effectiveness of the microprobe mutt be properly understood. Microprobe !
traces were also mode to test for grain boundary diffusion.

• Couple efflcle,_-_. The coupleswore related through affe_ famllles e_l
onelytlcel requlrements to reduce the total number of couples required,
yet still geminate accurate information.

l_ese practical condder_tlom, r_cessary to Implement on accurate diffusion study, ore

discussedIn the following text.

G-3 '
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The diffusion couples studied in this programcon _e characterized in several ways.

Examination of their binary and ternary phasedlagrams(1)*revealed which couples

possessedsolid solution and/or multiple phase ir*erdlffuslon zones. Tables G-I and

G-II present the_e interdlffuslon zone characteristics for the tungsten and rhf..,m couples

selected for this program. For two and three elemental com;_0nents,prediction of the

character of the interdltfuslon zones is relatively simple. Characterization of the inter-

diffusion zones for more than four elemental componentsis more difficult, ho vever the

zone characteristics as predicted in Tables G-I and G-II are the mostprobable. Tungsten

couples primarily form solid solution interdlffuslon zones and could have been evalu,_ted

_:.r diffusion coefficients by the Grube Integration (2) (common error function solution) if

the concentration gradients had been symmetrical about a comrt,oninterface and the

diffusion coefficients had been concentration independent. However, a Boltzmann-Matano (3'4'5)

analysis of the diffusion coefficients was necessarysince they were concentration dependent.

11_eBoltzmann-Matana analysis for binary cou.r°es could safely be .a_lled to thoseternary

alloys where concentration of the thim (or fourth) element is small!6'7) l_e principal

ternary diffusion coefficients will not differ appreciably from those of the binary com-

ponents in this case of small concentration of the .'hlrd component. Thosecouples with on

appreciable ternary component concentration could have been analyzed by state-of-the-art

ternary analytical techniclues(6'7'8) but such analysis would have required more information

than that planned for this program.

11_erhenium couples (Table G-II) form three and four phase Inter*lit'fusion zonm which, m

Jmt(5) hm pelntedout, can be analyzed by the Boltznmem-Motorm method. Diff, lsl_n

coefficients found For these couples by the Boltzmonn-/Vtalano method c_. also be checked

by concentratlan-panetraflcm equations developed by Wagner (S'10) and Smolu_t(. 10,11)

Againe If the amount of ternary conqaonentIs small, the major binary componentswill possess

cllffusioncoefficients dndlor to thoseof a binary couple.
r

lheso comlderatlom _ th_ the cllffuslon couples for this _ formed certain types

of intercliP'_udonzorms whlab could be evaluated for Interdlffusion coefficients by known

formulotiomandmetlmdl. !,

"Refemncmat theendof thisAppmdlx*G*.
f
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TABLEG-I. Diffusion Couple Characterization, Tungster. Couples

Typical

Interd| ffuslon Coupl e Interdl ffus_on
W Zone 1 Materlal Analysis :

W SS3 Cb BM

W SS Cb- 1Zr BM4

W SS Ta BM

W SS Ta- 10W BM4

_ W SS Ta-8W-2Hf BM4

_. W SS Ta-8W-2 Hf- 1Re BM4
?,

_ _ W 8 • Xa Re BM, WS

W SS W-25Re BM
_ W SS5 W-30.9Re-20. i Mo T

• W SS5 Mo-5ORe T

i

1. Found from examination of binary and ternary phase diagrams (Ref. I)

2. Typ|cal method of onalyzlng for |nterdiffuslon coefficient

BM = Boltzmann-Matano analysis (binary) _ef. 5) I '
W,S -- Wagner, Smoluchowskl mulfiphase (Ref. 5, 10, 11)

; T = Ternary diffusion analysis (Ref. 6, 8, 9)

_' 3. Solid solutlon or phases

; 4. Binary Boltzmann-Matano analysis is valid when concentration of
) the third comtltuent of ternary is small (Ref. 6, 7)

5. W-_-Re phase dlagmm at 1000, 151_°C (Ref. 1)

e

G-5 ,
i

IlL II ..... II I I I __.ill i i ii .._, I ,, ,,s_, _, . _ _'_,
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TABLE G-II. Diffusion Couple Characterlza_ion, Rhenium Couples

Typical "_
Interdiffusion Couple Interdlffusion

Re Zone 1 Material Analysls 2

Re 8xa Cb BM, S

Re _xa Cb- 1Zr BM3, S

Re _xa Ta BM, S

Re /_'ca Ta- 10W BM3, S
L

Re 3xa "ra-8W-2Hf BM3, S

Re 8xa Ta-8W- 1Hf- 1Re BM3, S

Re _x ¢ a W-25Re BM

Re /_x ¢ a W-30.9Re-20.1Mo T

Re /_xa a Mo-5ORe T

Re5 /3x _ra W BM, WS

:* 1. Found from examination of binary and ternary phase diagrams (Ref. 1)

2. Typical method of analyzing for interdiffusion coefficient

_ BM = Boltzmann-Matano analysis (binary) (Ref. 5)
W,S.= Wagner, Smoluchskl multlphase (Ref. 5, 10, 11)

T = Ternary diffusion analysis (Ref. 6, 8, 9)

3. Binary Boltzmann-Matano analysis is valid when concentration of
_ the third constituent of ternary is small (Ref. 6, 7)

; 4. Mo-W-Re phme dlagmm (Ref. 1)

: 5. CVD Re/_" 0001 planes to W

i

J
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I The proper selectlon of diffusion couple dlm_nslons is particularly important to analytical
techniques as well a_ to economics. The utllzotlon of generally accepted evaluation formu-

lations (error function or Boltzmann-Matano analysis) requires that the concentratlen pro-

files and couple geometries (size) conform to the mathematical boundary conditions imposed

in the darlvatlon of these formulations. For instance, if infinite boundary conditions are

assumedin deriving the dlffusion-concentratlon profile formulation, then the experimentally

determined profile should not approach the boundaries (physical surfaces) of the couples.

Considerable error in the value of D (interdlffuslon coeffic ient) can result if the couples

are not properly sized. Background studies for this program (Appendix C) showed that for D

values prcdlcted for this study, couple widths (in the diffusion direction) should be 0.10 to

0.13 cm (40-50 mils) in order to avoid these errors in determining the true D values. The

diffusion couples were thus fabricated from 0.20 cm (80 mii) sheet products.

: The pre-ageing conditions of the autoclave welded couples were examined optically for bond

integrity, the presence of impurities or oxides at the bond interface, and any other irregu-

_ larities which could interfere with masstransport. The extent of interdlffuslon introduced

hy the welding processwas noted by a series of microprobe traverses and was found to be

• _ about 1 x 10"4 cm on the average. Residual strain from the bonding processor from couple _ :

preparation was not expected to influence diffusion properties at the elevated temperatures !

proposedfor this study.(12) _

Pre-age|ng metal lograph|c inspections for grain size, grain boundary precipitates, and x-ray

. analysis for retention of the preferred orientation of the CVD tungsten and rhenium in the

_ bonded couples were also made. Such information contributed to post-test evaluation.

: The ageing treatments of the refractory metal diffusion couples were performed in ion pumped _
+

vacuum furnaces at a pressureof 1 x 10-8 torr or less while at temperature. Several, 1dlffuslon age practices were carefully followed to insure accurate results. Diffusion couples g

were mounted in flee standing supportstands in such a fashion that the more volatile con- I

stltuents of one couple did not vaporize to another couple. If this occurs at high temperatures _ ,

and during the long time anneals, perturbations to the analytical concentration profiles could

result. This potential problem was solved by pl crag commonfaces of the couples togethera •

in theft axial alignment in the stands.

G-7
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A critical consideration to the ageing cycles is the heatup and cooldown rates of the

diffusion couples. For short time anneals, the heatup and c_oldown ramps should be as

steep as possible since diffusion occurring during these temperature ramps will be al

varying d|ffuslvltles. Too rapid a heatup ramp could flood the ion pumps (duc to o_,_asslng_

and cause partial loss of vacuum as well as couple contamination. To accur_tew determine

the time at which the couples were considered to have been at the ageing temperr tur_ 1",

it was necessary to record accurate tlme-temperature (t-T) curves and to apply a fir.,e

correction analysis. Check calculations of this correction were made and the correction _

was found to be minimal. Due to the low massof the t_::talum resistance heaters, quench

times were quite rapid and ulso minimal. :

The preparation of diffusion aged couples for analyses must be carefully controlled. The

couples were sectioned normal to the couple bond and parallel to the direction of diffusion

(Appendix E. Error Analysis). A position well removed from the couple edge was selected

for microprobe analysis to avoid surface diffusion effects. Sectioning was performed ky

EDM machining or on a cooled metallographlc wheel to avoid overheating the couple. /

These cutting techniques avoided distorting or smearing the interdiffuslon region. An

alignment jlg was included in the metallographlc mount to insure that the coupleswere

mounted with their bonded plane normal to the polishing plane. Usually cold mountswhich

avoid the temperatures and pressuresof hot mountsare employed for metal lographlcolly

mounting diffusion couplest but in thls study the materials being investigated were

unaffected by these conditions. Couples were mounted two per mount and carefully

polished to avoid scratching or smearing the interdlffuslon zone. The couples were also '

mounted accerdlng to alloy family to facilitate microprobe operation. Initial metallo-

graphic inspection for grain slze and an) indication of reduction of preferentially orientedq

CVD grains was made. A small grain slze at the lower age temperatures usually contrlbutes

to grain boundary diffusion at these temperatures.

1 Microhardne_s traversesof the lnterdlffusion zones of several of the mounted couples ;

/ _I Indicated eJnbrlttlement developing In these zones. The correlation of changes in (

_ r _

G-8
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m;crohardness with changes in phase structure or composition in the ;nterdiffus;on zone has

been clone by others(,13)andis not regarded as a p:ec;se analytical technique.

Microprobe traces were made on couple surfaces mounted normal to the talc ,,p, _k._

source for optimum alignment of the interdiffuslen axls. Each couple's elemental con-

stituent was traced for a concentration profile. Traces were made at 45° and 90° angles

to the ;nterdiffusion zone. Also, a few microprobe traces were made on selected couples

(low te:nperature cJgetrec,tments) parallel to and at selected distances fro,_, ihe " "e,.

diffusion zone to check for grain boundary diffusion effects. Hartley, et al, (14}" in analyzing

binary ;nterdiffusion couples have noted that interdiffusion coefficients calculated from

microprobe concentration traces in small interdiffusion zones are two to three orders of

magnitude greater than values extrapolated from larger interd;ffusion gap analyses at

higher temperatures. They reasoned that such a small zone has a steep concentration

gradient and that a microprobe tends to flatten out and elongate the steep region of the

concentration curve. This results in a lower slope, giving a higher calculated diffusion
\

coefficient (Boltzmann-Motano). The effect is believed to be the result of secondar,,

fluorescence, which decreases resolution of the probe trace. (15)* Higher than expected

diffusion coefficients at low temperatures can also be due to grain boundary effects or an

increasing difference in intrinsic diffusion coefficients. Experience indicates that better

diffusion analyses can be made with wide interd;ffuslon zones, thus dictating emphasison

longer age time_ at low temperatures.

This study required the complete interdiffusion characterization of two types of tungsten

and two types of rhenlum;

(1) Arc Cast W
(2) Flourlde CVD Y///to I00
(I) Powder Metallurgy Re
(2) Chloride CVD Re//to 0001

each coupled to the refractory metal alloys presented in Tables G-I and G-II. 11_ecouples

,

*And is also correlated to beam spot diameter (See Appendix K. Error Analysis).

s
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were dlffuslon aged at 5 temperatures(1200, 1500, 1630, 1800and 2000°C) Fortwo dlf_erent

t|me increments (100and 1000or 1000and 2000 hours)at each temperature. The refra.:tory
1

metal couple alloys were grouped by alloy family as:

(1) ColumblumFamily

CB
Cb- 1Zr

(2) Tantalum Family

Ta
Ta-IOW
T-111
ASTAR-811C

(3) RheniumFamily

Re(powermet product)
(or W (arc cast))
W-25Re
W-30.9Re-20.1Mo
Mo-5ORe

i | ,,

1
Completecouple identlflcation chartsandageschedulesare In AppendixF. Diffusion i
CoupleAge/Identifl©atlon Chart. \{
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II. DIFFUSION ANALYSIS

The previous section has discussedtile mechanics of conducting the ageing study of the

diffusion couples and has mentioned briefly the type of mathematical analyses that the

interdlffuslon concentraHon profiles will require. This section will

• Identlfy the mathematical relations required to solve for the diffusion
coefficients of the couples described in the previoussection.

• Illustrate the appearance of that diffusion data with respecr to
various temperature, time, and couple compositional varlatlons.

• Discusssomecouple analytical conslderatlons that were mentioned
in the previous section.

• Demonstrate the generation of engineering level analysis for the
systemsof this study.

The mathematics of diffusion are well developed in such texts as Jost(5) or Crank! 16)

For the case of a one-dlrectional concentration gradient, the flux J of a solute species

diffusing due to that concentratic,n gradient is expressedby Fick's First Law:

dC
J = -D--anT (G-I)

i
where D is the diffusion coefficient. Mast treatments will follow the Ireatlse that diffusion

will follow the concentration gradient. Since it is not feasible to measureboth J and

dC/dX in caseswhere one metal is diffuslng through another, conslderution of the change tr

in concentration with time in a volume element with unit crosssectional area and thickness

dX results in :_

dCe ._ - (D ) (G-2) :

I

2

7'
}

G-! I ._.
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::or D not a function of concentration equation (2) becomes

dC d2 C

- D 7 (G-3)

Upon applying the boundary conditions far a semi-lnflnlte diffusion couple

BC.1 C=C iX< 0it=0 C=C ;X=-ao t=/= 0O O

BC.2 C CF; X> 0it 0 C Cf; X +ao t-_= 0

where C is the concentration of substat,ceA at somepoint in the diffusion zone, the

solution to equation (G-3) would be

co, [ ]co-cf - 1/,21- err(_,) (0-4)

where
X

IJ = 21_ I> (G-5)

and

j_o I_ ;t 2
_ 2 dt (G-6_

err(_) _/;
(where erf is the well tabulated error function)

For symmetrical diffusion concentration profiles about an Interface, and D not varying with

• concentration, a plot of (Co-C f) / (Co-C f) versusX on probability paper ,.4 II result in a

; straight line whose slope will be related to D.

i' D values for the diffusion couples desired In this study could be determined from this
relationship [ (equation (G-l)] If they were not a function of concentration. Devlatiomf
from Ilnearity on the probability paper plots would readily establish whether the D's for theJ

. coupleswere concentratlon dependent or not. (Devlatlom at low temperatures may also be

due to groin boundary effects). ,j
}.

:. G-12
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Since most metal diffusion couples do not have concentration independent D values, the

utility of equation (G-4) is rather small. However, this equation can be employed to

generate an approximation to the depth of solute penetration in a diffusion couple.

Imagine a couple of W/Ta-10W as depicted in Figure G-1. An approximate D value for

2000°C can be approximated from literature data for refractory metal diffusion at 2000°C.

Ref.

D(Cb.-)Mo) = I 0"9 cm2/sec 17

D(Cb&Ta _ Ta) = 10-10 18

D(Co _ Cb) = 10-9 18

D(Cb - Mo) -- 10"10 14

Usinga probable O value of 10-10 cm2/sec and a 1000 hour age, the concentration profiles

of Figure G-1 result. For this case the range of interdlffusion approaches 0. 12 cm (50 mils)

(approximately 0. 06 cm (25 mils) into each couple). Wyatt and Argent(17)report interdiffu-

slon zones of 20 to 600 microns (i. e., up to 25 mils thick) for Cb-Mo couples aged at 2000

to 1500°C for 25 to 115 hours. Commonlyaccepted practice in analyzing diffusion profiles

is the appllcatlon of mathematical relations derived wlth Infinite boundary conditions (such

as equation (G-4)). Jost(5)states, however, that solutions for the infinite systemmay be

applled to actual experiments as long as concentration changes have not yet reached the

boundaries. Castle_an(i0)agrees and showsthat predlctlons of the time required for concen-

tration values for finite diffusion couples to approach certain limits as predicted by infinite

couple equations can be in error by 400/oor more if bounda,ies are app.-oached. Thusit Is

extremely important to have propercouple geometries (sizes) for the accurate determination

of diffusion coefficients. Fromthe suppositionsof Flgure (G-1) the proper couple size for

1000 hoursat 2000°C for this study was calculated as O. 10 to O. 12 cm (40 to 50 mll) sides

on each side of the Interface. Actual materials employed were 0. 20 cm (80 mil) sheet. *

- For the situation where the diffusion coefficient is a function of concentration, the solution :

_ to equation (G-2) was given by Boltzmonn(3) by Introducing the parameter y = X/_

)*

L

G-13 _.

i*

m ii .......... jT ,_ .._ _- _ im I I llnm I I _ " _
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W Side To-10W Side

W
1.0

Ta
m

Relative
Concentration

m

D

• 5 -- time - 0

-- i

i i i t I I I i
-40 -30 -20 -I 0 0 I0 20 30 40

', Distance (ml Is)

• ,.0i ,,
Relative
Coneentrat

" .5 r _ tlme t = I000 hours

;. _ il t I I ._-40 -30 -20 -10 0 I0 20 30 40 ':

._ Dlstcmc. (mils)

2

RgureG-1. IllustratingPrecltetedInterdiffudonforaW/l'a-10W Couple *

at 2000°Cafter I000 Hours(/llme D= I0=I0 c:m2"iNcl." \__ ;:_

O-14 _

;" i )
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, Equation(G-2) becomes

d dC dC

(D _ )= - -_- (---ar_.y) (G-7)
/

' Upon integration,equation(G-7)becomes

.,cf
andsubstitutingfory yieldsthe Boltzmann-Matanoequation

for the boundaryconditionsBE.1 and BC.2.

; TheMatano interface, X = 0, is defined by the condition that

XdC = 0 (G- 10)
' f

' A calculationof "Dfor a time l'lterval of diffusion, t, is shownin FigureG-2, wherethe

dlffusioncoefficient at CI I$ equal to

• C

c,

', wl_erethe Integral in eq_tlon (G-I I) Isequal to erea S2 in figure G-2.

i' Hclrtley(19) hascomputerizedequation(G-9). Anerror functionfit Isusedto interpolate

/ betweenaridsmoothlhe experimentald(_ (leastsquaresfit), and calculatlom are performed

on the reiteratedd_. AFixmdlxX dmixltmtm the curve fitting r.qx_lllty of the program ._

G'15 ,
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\

\

\
\,

\,

\,

\
in matching experlmental data, ar_ presents the variatlon in D with composition. The

computer time on the CDC-6600 compu_er for this program is approximately 15 seconds.

Once the interdlffuslon coefficients (D) t.ave been resolved at _eve.-al temperatures, their

temperature dependency can be described g_.aphlcally (through the Arrl;enlus i.,lation) as

1
In (G-I_)u a -1-

This relation results in a graph wlth a Familyof stralgh_ Tines,each llne representing one

concentration level (ie D ( Ci)). Each line will also rep,'esent a separate activation energy
far interdiffuslon.

For the formation of two or more phasesin the interdlffuslon zol_eoas would be expectecl

with the rhenium couples, two modesof solution are possible. Har_iey's Matano analysis

i computerprogram{19) will calculate the interdlffuslon coefficlents if:rough the multiple

phase region(S). Thls is illustrated in Appendix H. Hartley admits that for small phase

wldths, the absolute values of t_ledlffuslvitles calculated are certalnly qusstlonable (due

to a lack of data po|nts). I_owever, it Is possible to calculate reasonably _ dlffuslvltles

for the other portions (wider phases)of the conce,_tratton curve. These diffuslv;tles can be

Inspired Into the equatiom developed by Wagner (S' i0) and Smoluchowski(10' 11) h.v

diffusion in multlphase couples and checked for accuracy.

As on example of muitiphme dlffuslon, comlder Figure G-3. Metals A and B, of differer_t

stru©ture, are coupled. From the left slde of Figure G-3, the diffusion couple interface

concentmtk_ remain comtont and hove the values Ca and CB as obtained .*romthe equ|*

Iibrlum p_se diagram. 1be Interface movesparabolically with the relatiomblp
±"

_ - b _/t (G-13)

G-17
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i

where b is temperaturec_ependent.Thesolution of the diffusion equation for the shuatlon

on the left side of Figure G-3 by Wagner led to the results that

-b2/4D
:. (C° - Ca)_,/D e a %' _b e-b2/4D_

o - = --_.-b(Ca-C_)(G-14)
1 + erf ( .__bb ) 1 - err ( b )

2x/D 2"_/D
a _

° C (X,t) =c - [1 +erf( X ) j

a o (Co-Ca) 2V/Da t
(G-15)

_. l+erf(--b ) .:
_; 2 _D a _'li

for --_ <X <_X

and

A
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where C (x,t) is the concentration of A in the a phase at posltio, x and tlme t and C (x,t)a

is the concentration of A in the _ phase at position x and tlme t. The solution of the Fick

second law equation for similar boundary conditions for the figure to the right in Figure G-3

has been solved by Smoluchowski! I0'11) His solutlor is quite elaborate. The interfaces are

still described mathematically by equation (G-3).

The Boltzmann-Matana solution does not requ.:re that the true couple interface be known in

order to solve for the interdiffuslon coefficient D, but is important if intrinsic dlffuslvifies

are desired. In a diffusion coupe of A and B where A and B interdiffuse at different rates,

it is necessary to obtain some parameter other than D in order to obtain the intrinsic

dlffuslvlties,D.I,)_ and DB. K]rkendall noted the difference in DA and DB in his marker
experlment_. 0s By placing inert markers in the couple interface, Kirkendall and Smigelskas

were able to follow the motion of the original interface due to the nonequallty of the intrinsic

diffusion coefficients. Darken (21) later showed that the intrinsic dlffuslvities could be related

to the interdlffuslon coefficient (D) by the following equations:

N

• D = NAD B + NBDA (G-17)

8 N A

.i V = (DA-DB) _ (G-18)

where N. = Cl/C, N A + N B= 1, and V is the velocity _.Fthe markersin the diffusion zone| /

'; wlth respect to the ends of the couple.

k

T i*

L_

:4 Darken(22) has commented that if we wlsh to recognize as dlffuslon only motion relative to :,

markers and thus employ coordinate axes rigidly cttached to a marker, then we are led to

two intrlmic diffusion coefficients. If, on the other handt we take the attitude that diffusion :

and bulk motion are all one and the sameprocess, and that our Interest is limited to the i
':_ relationship between compmltlon, distance and time, then the interdlffusion coefficient will .* _c

do.
,_

G-20 v
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For the purposes of this study, interdlffuslon coefficient will acceptably describe

desired interdlffuslon characteristics. The interdlffuslon coefficient is normally presented

as (1) a graph of In 'D vs composition, and (2) as a graph of In D vs 1/T as a function of

couple composition. This results in separate Arrhenlus parameters, D -frequency factor,_-o

activation energy, for each composition.

In a more practical sense, engineering level predictions of interdlffusion zone widths for

long age times (extrapolations), and temperature relations to the interdiffuslon rate can be

resolved wlthout extensive analytical treatments. Perusal of equatlons G-4, 14, 15, and

16 will reveal that for a constant 'D, and constant boundary concentratlons,

,_X
- constant (G- 19)

2 _/Dt

where AX is the penetration distance for a certain concentration level, t is the age time

! at temperature, and D is the interdiffusion coefficient. The proportion constant, for varying

times and temperatures, is invarlant. A graph (Figure G-4) of total penetration distance

ZbX versus _/t will thus yield a family of lines (temperature dependence) for each material

combination.

If one wishes to know the net interdiffuslon zone width (or penetration to a certain con- :

centratlon level) of a particular couple combination, Figure G-4 can be used. However,

Figure G-4 can only be employed for predictions at the temperatures listed. Thus, in order

to find AX for time t at temperature TI :_= T. in Figure G-4, other relationships must be
I

developed.

Appendlx C (Interd|ffus|on Predictive Model) demonstratesthe development of a temperature

_: relationship which relates

: 6X 2 1
; In "-T-- a T (G-20)



T1

T2
_x

2 > T3

(t)l/2

i

Figure G-4. Predictive extrapolation of Interdlffuslon zone width (AX) as a
J function of age time (t) for varying tempemturm (T). _' _

/
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where

I_X = interdlffuslo:_ zone width

t -- age time

T = age temperature (OK)

From a typical graph of equation (G-20), (Figure G-5) it is possible to predict the inter-

diffusion zone width for an._._yage time for an_.._yage temperature for the couple material

combinations represented in Figure G-5.

; j

.!

r_

g,

G-23
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In Z_x._.-2
t

1A

Figure G-$. For one material combination, the Interdlffusion zone width can \

: be predicted for any age time for any temperature. _;

r: _ G'24 "
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I II. SUMMARY

To characterize a material combination with respect to interdlffuslon parameters, several

relations are necessary:

A. For eng|neerlng interests:

1, Relating In (--_) vs 1/T

2. Relating _ to x/'t (at one T)

B. For academic (dlffusivlty) interests:

L
1 Relating _n D vs 1/T

2. Relating In D vs Composition (at one T)

: Thin." relations were found, when possible, for the systemsof this study.
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